A£® | ABCDÏûºÄµÄµç¹¦ÂÊÓë×ܵĵ繦ÂÊÖ®±È²»¶Ï¼õСµ½50% | |
B£® | MNÉÏÀÁ¦µÄ¹¦ÂÊÏȼõСºóÔö´ó | |
C£® | MNÖеçÁ÷²»¶ÏÔö´ó | |
D£® | Èôµ¼Ìå¿òÔÚDµã¶Ï¿ª£¬ÔòMNÖеçÁ÷²»±ä |
·ÖÎö Óɵ¼Ìå°ôÔ˶¯Ëٶȵõ½ÈÎÒâʱ¼äµ¼Ìå°ôµÄλÖ㬽ø¶øµÃµ½µ¼Ìå°ô½ÓÈëµç·µÄ³¤¶È£¬½ø¶øµÃµ½µç¶¯ÊÆ£¬È»ºó¸ù¾Ýµç·ÇóµÃµçÁ÷£¬½ø¶øµÃµ½°²ÅàÁ¦£¬ÀûÓõ¼Ìå°ô´¦ÓÚƽºâ״̬µÃµ½ÀÁ¦£¬½ø¶øÇóµÃÀÁ¦µÄ¹¦ÂÊ£®
½â´ð ½â£ºA¡¢½ðÊô°ô´ÓBµãÏòÓÒÔÈËÙÔ˶¯ÖÁACµÄ¹ý³Ì£¬ÉèËÙ¶ÈΪv£¬ÄÇô£¬ÔÚʱ¼ätʱ£¬µ¼Ìå°ôÉϽÓÈëµç·µÄµç¶¯ÊÆΪ£ºE=2Bv2t£»
Éèµ¼Ìå¿ò±ß³¤Îªa£¬µ¥Î»³¤¶ÈµÄµç×èΪR0£¬ÔòMN½ÓÈëµç·µÄµç×èΪ£ºr=2R0vt£¬µ¼Ìå¿òÔÚµ¼Ìå°ô×ó²àµÄµç×èΪ£º${R}_{1}=2\sqrt{2}{R}_{0}vt$£¬ÓÒ²àµç×èΪ£º${R}_{2}=4a{R}_{0}-2\sqrt{2}{R}_{0}vt$£»
ËùÒÔ£¬Íâµç·µç×èΪ£º$R=\frac{{R}_{1}{R}_{2}}{{R}_{1}+{R}_{2}}=\frac{\sqrt{2}vt£¨2a{R}_{0}-\sqrt{2}{R}_{0}vt£©}{a}$=$£¨2\sqrt{2}-\frac{2vt}{a}£©{R}_{0}vt$£»
ÓÉÓÚÄڵ緵çÁ÷ºÍÍâµç·×ܵçÁ÷´óСÏàµÈ£¬ËùÒÔABCDÏûºÄµÄµç¹¦ÂÊÓë×ܵĵ繦ÂÊÖ®±ÈΪ$\frac{R}{R+r}=\frac{2\sqrt{2}-\frac{2vt}{a}}{2+2\sqrt{2}-\frac{2vt}{a}}$=$1-\frac{1}{1+\sqrt{2}-\frac{vt}{a}}$£¬ÒòΪ½ðÊô°ô´ÓBµãÏòÓÒÔÈËÙÔ˶¯ÖÁACµÄ¹ý³ÌÖУ¬¹Ê$0£¼t£¼\frac{a}{\sqrt{2}v}$£¬ËùÒÔ£¬ËætÔö´ó£¬ABCDÏûºÄµÄµç¹¦ÂÊÓë×ܵĵ繦ÂÊÖ®±È²»¶Ï¼õС£¬¼õСÖÁ$1-\frac{1}{1+\sqrt{2}-\frac{v¡Á\frac{a}{\sqrt{2}v}}{a}}=1-\frac{1}{1+\sqrt{2}-\frac{\sqrt{2}}{2}}$=$1-2£¨1-\frac{\sqrt{2}}{2}£©=\sqrt{2}-1$£¬¹ÊA´íÎó£»
C¡¢ÓÉA¿ÉÖªMNÖеçÁ÷$I=\frac{E}{r+R}=\frac{2B{v}^{2}t}{£¨2+2\sqrt{2}-\frac{2vt}{a}£©{R}_{0}vt}$=$\frac{Bv}{£¨1+\sqrt{2}-\frac{vt}{a}£©{R}_{0}}$£¬¹ÊËætÔö´ó£¬I²»¶ÏÔö´ó£¬¹ÊCÕýÈ·£»
B¡¢MNÉÏÀÁ¦µÄ¹¦ÂÊP=Fv=2BIv2t=$\frac{2{B}^{2}{v}^{3}t}{£¨1+\sqrt{2}-\frac{vt}{a}£©{R}_{0}}$=$\frac{2{B}^{2}{v}^{3}}{£¨\frac{1+\sqrt{2}}{t}-\frac{v}{a}£©{R}_{0}}$£¬ÒòΪ½ðÊô°ô´ÓBµãÏòÓÒÔÈËÙÔ˶¯ÖÁACµÄ¹ý³ÌÖУ¬¹Ê$0£¼t£¼\frac{a}{\sqrt{2}v}$£¬¹ÊËætÔö´ó£¬PÔö´ó£¬¹ÊB´íÎó£»
D¡¢Èôµ¼Ìå¿òÔÚDµã¶Ï¿ª£¬Ôòµç¶¯ÊƲ»±ä£¬ÄÚ×è²»±ä£¬Íâ×è±ä´ó£¬ËùÒÔ£¬MNÖеçÁ÷±äС£¬¹ÊD´íÎó£»
¹ÊÑ¡£ºC£®
µãÆÀ ±ÕºÏµç·Çиî´Å¸ÐÏßÎÊÌ⣬һ°ã¸ù¾Ý±ÕºÏµç·Ô˶¯ÇóµÃµç¶¯ÊÆ£¬È»ºóÓɵç·ÔÀíÇóµÃµçÁ÷£¬½ø¶øÇóµÃ°²ÅàÁ¦¡¢µç¹¦ÂÊ¡¢·¢ÈÈÁ¿µÈÎÊÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | AÇòÏÈÂäµØ | B£® | BÇòÏÈÂäµØ | ||
C£® | Á½ÇòͬʱÂäµØ | D£® | Á½ÇòÂäµØʱµÄËÙ¶ÈÏàµÈ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | B£® | ||||
C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÊµÑéÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | Îï¿éB²»ÊÜĦ²ÁÁ¦×÷Óã¬Ð¡³µÖ»ÄÜÏòÓÒÔ˶¯ | |
B£® | Îï¿éBÊÜĦ²ÁÁ¦×÷Ó㬴óСΪmgtan¦È£¬·½ÏòÏò×ó£»Ð¡³µ¿ÉÄÜÏòÓÒÔ˶¯ | |
C£® | Îï¿éBÊÜĦ²ÁÁ¦×÷Ó㬴óСΪmgtan¦È£¬·½ÏòÏò×ó£»Ð¡³µÒ»¶¨Ïò×óÔ˶¯ | |
D£® | BÊܵ½µÄĦ²ÁÁ¦Çé¿öÎÞ·¨Åжϣ¬Ð¡³µÔ˶¯·½Ïò²»ÄÜÈ·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | ½»±äµçÁ÷µÄÖÜÆÚΪ0.2 s | B£® | ½»±äµçÁ÷µÄƵÂÊΪ2.5 Hz | ||
C£® | ·¢µç»ú¹¤×÷µçÁ÷Ϊ2 A | D£® | ·¢µç»úÊä³öµÄµç¹¦ÂÊΪ18 W |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ¸Õ·ÖÀëʱ£¬aÇòµÄËٶȴóСΪ1.1m/s | |
B£® | ¸Õ·ÖÀëʱ£¬bÇòµÄËٶȴóСΪ0.2m/s | |
C£® | ¸Õ·ÖÀëʱ£¬a¡¢bÁ½ÇòµÄËٶȷ½ÏòÏàͬ | |
D£® | Á½Çò·Ö¿ª¹ý³ÌÖÐÊͷŵĵ¯ÐÔÊÆÄÜΪ0.1J |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com