精英家教网 > 高中物理 > 题目详情

【题目】如图所示,半径R=0.5m的光滑绝缘圆形轨道固定在竖直面内,电荷量q=0.2C、质量m=0.2kg的带正电小球静止于轨道内侧最低点A,整个装置处于水平向右的匀强电场中,电场强度为E,现给小球水平向右的瞬时冲量I,已知重力加速度g10m/s2

(1)通过计算说明,小球能否通过轨道最高点B与电场强度大小E是否有关,若小球能够通过最高点B,题干中所给物理量需要满足什么条件。

(2)E=10N/C且小球恰好可沿轨道运动至B点,求运动过程中小球与轨道间弹力的最大值(结果可保留根号)。

(3)若保持水平冲量I及电场强度大小与(2)中相同,仅把电场强度的方向调整为竖直向下,求小球沿轨道上升的最大高度。

【答案】(1)小球能否通过轨道最高点B与电场强度大小E无关, (2) (3)

【解析】试题分析:(1)由题意小球恰好可运动到B点,小球与轨道间弹力为0,由牛顿第二定律求出小球在B点的速度,再小球由A点到B点过程由动能定理求出小球的初速度从而判断小球能否通过轨道最高点B与电场强度有无关系;

(2)利用“等效重力”找到“等效最低点即与轨道间作用力最大由动能定理求出此处的速度,再利用牛顿第二定律求出作用力

(3)由动能定理和牛顿第二定律求出最大高度。

解:(1)小球恰好可运动到B点,小球与轨道间弹力为0,对小球由牛顿第二定律可得:,解得

对小球由A点到B点过程由动能定理得

解得

小球能否通过轨道最高点B与电场强度大小E无关,与A点的初速度有关,即与冲量I有关,

(2)小球到达等效最低点时速度最大,与轨道间作用力最大,从A点到等效最低点由动能定理得

解得

对小球在等效最低点由牛顿第二定律得

解得:

(3)设小球在C点脱离轨道,C点与圆心连线与水平方向成角,由牛顿第二定律:

从最低点AC点由动能定理得

解得:

由小球沿轨道运动的最大高度

解得:

点晴:解决本题关键利用“等效重力场”找出最低点即速度最大(作用力)最大的位置,综合动能定理和牛顿第二定律求出。

练习册系列答案
相关习题

科目:高中物理 来源: 题型:

【题目】2017126日报道,中国散裂中子源项目将于2018年前后建成。日前,位于广东东莞的国家大科学工程——中国散裂中子源(CSNS)首次打靶成功,获得中子束流,这标志着CSNS主体工程顺利完工,进入试运行阶段。对于有关中子的研究,下面说法正确的是( )

A. 中子和其他微观粒子,都具有波粒二象性

B. 一个氘核和一个氚核经过核反应后生成氦核和中子是裂变反应

C. 卢瑟福通过分析α粒子散射实验结果,发现了质子和中子

D. 核反应方程中的y=206,X中中子个数为128

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图(a),超级高铁(Hyperloop)是一种以真空管道运输为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。如图(b),已知管道中固定着两根平行金属导轨MNPQ,两导轨间距为r;运输车的质量为m,横截面是半径为r的圆。运输车上固定着间距为D、与导轨垂直的两根导体棒12,每根导体棒的电阻为R,每段长度为D的导轨的电阻也为R。其他电阻忽略不计,重力加速度为g

(1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。求运输车与导轨间的动摩擦因数μ

(2)在水平导轨上进行实验,不考虑摩擦及空气阻力。

①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒12均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象)

②当运输车进站时,管道内依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。求运输车以速度vo从如图(e)通过距离D后的速度v

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】在如图所示的电路中,理想变压器原、副线圈的匝数比为21,五个完全相同灯泡的额定电压均为U,交流电源的电压恒定不变。当闭合K3K4而断开K5时,灯泡L3L4恰能正常工作,则以下判断正确的是

A. 当闭合K3K4而断开K5时,L1L2都能正常工作

B. K3K4K5都闭合时,L1L2都能正常工作

C. 当闭合K3K4而断开K5时,交流电源的电压为2U

D. K3K4K5都闭合时,L1L2的功率会减小

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,水平桌面上方区域存在竖直向上的匀强电场,电场强度。过桌左边缘的虚线PQ上方存在垂直纸面向外的匀强磁场,磁感应强度,虚线PQ与水平桌面成45°角。现将一个质量、带正电的物块A静置在桌面上,质量、不带电的绝缘物块B从与A相距处的桌面上以的初速度向左运动。物块AB与桌面间的动摩擦因数均为,二者在桌面上发生弹性碰撞(碰撞时间极短),碰撞后B反弹速度为A向左运动进入磁场。(结果保留两位有效数字)求:

1)碰撞后物块A的速度;

2A进入磁场到再次回到桌面所用时间;

3)若一段时间后AB在桌面上相遇,求碰撞前A与桌左边缘P的距离。

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图甲所示,间距L=1m、电阻不计的平行导轨固定在斜面上,倾角 =37°,导轨下端与R=2的电阻相连,空间存在范围足够大的匀强磁场,若规定竖直向下为磁感应强度的正方向,则磁感应强度B随时间t的变化图线如图乙所示,长L=1m、电阻r=1的导体棒在距导轨底端d=1m的位置始终保持静止状态,已知t=1s时导体棒与导轨间的摩擦力为0t=3s时导体棒与导轨间的静摩擦力恰好达到最大值,重力加速度g10ms2,最大静摩擦力等于滑动摩擦力,下列说法正确的是( )

A. 回路中的感应电动势为375V

B. 导体棒的质量为0.5kg

C. 在前3s内,导体棒与导轨间的摩擦力一定先减小后增大

D. 在前3s内,导体棒所受摩擦力的方向先沿导轨向下后沿导轨向上

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,固定的半圆形竖直轨道,AB为水平直径,0为圆心,同时从A点水平抛出质量相等的甲、乙两个小球,初速度分别为v1、v2分别落在C、D两点。并且CD两点等高,OCOD与竖直方向的夹角均为37°(sin37°=0.6,cos37°=0.8).

A. 甲、乙两球下落到轨道上CD两点时的机械能和重力瞬时功率不相等

B. 甲、乙两球下落到轨道上的速度变化量不相同

C. v1:v2=1:3

D. v1:v2=1:4

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】某实验小组利用如图所示的装置验证机械能守恒定律,实验主要步骤如下:

①将光电门安放在固定于水平地面上的长木板上;

②将细绳一端连在小车上,另一端绕过两个定滑轮后悬挂一钩码,调节木板上滑轮的高度,使该滑轮与小车间的细绳与木板平行;

③测出小车遮光板与光电门之间的距离L,接通电源,释放小车,记下小车遮光板经过光电门的时间t;

④根据实验数据计算出小车与钩码组成的系统动能的增加量和钩码重力势能的减少量。

(1)根据上述实验步骤,实验中还需测量的物理量有_________

A.小车上遮光板的宽度d B.小车的质量m1

C.钩码的质量m2 D.钩码下落的时间t′

(2)由实验步骤和(1)选项中测得的物理量,可得到系统动能增加量的表达式为_________钩码重力势能减少量的表达式为________________

改变L的大小,重复步骤③、④。若在误差范围内,系统动能的增加量均等于钩码重力势能的减少量,说明该系统机械能守恒。

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,在水平放置的已经充电的平行板电容器之间,有一带负电的油滴处于静止状态.若某时刻油滴的电荷量开始减小(质量不变),为维持该油滴原来的静止状态应

A. 给平行板电容器继续充电,补充电荷量

B. 让平行板电容器放电,减少电荷量

C. 使两极板相互靠近些

D. 将上极板水平右移一些

查看答案和解析>>

同步练习册答案