·ÖÎö £¨1£©ÓÉÊÜÁ¦Æ½ºâÇó½â£»
£¨2£©¶ÔÎï¿éÔÚбÃæÉÏÔ˶¯Ó¦Óö¯Äܶ¨ÀíÇóµÃ»¬ÉÏAµÄËٶȣ¬È»ºó½øÐÐÊÜÁ¦·ÖÎöµÃµ½Îï¿éºÍAµÄÔ˶¯£¬ÔÙÓɶ¯Äܶ¨ÀíÇóµÃСÎï¿éµ½´ïľ°åAÄ©¶ËµÄËٶȣ»
£¨3£©·ÖÎöÎï¿é»¬ÉÏBºóÎï¿éºÍBµÄÔ˶¯£¬¸ù¾ÝÔȱäËÙÔ˶¯¹æÂÉÇóµÃ×î´óÏà¶ÔλÒÆ£¬¼´¿ÉµÃµ½Îï¿éµÄ×îÖÕ״̬£®
½â´ð ½â£º£¨1£©µ±Ð¡Îï¿éµÄĦ²ÁÁ¦Îª×î´ó¾²Ä¦²ÁÁ¦£¬Ð¡Îï¿éÔÚбÃæÉÏÊÜÁ¦Æ½ºâʱÄÜ´ÓбÃ濪ʼÏ»¬£¬¹ÊÓУºm1gsin¦È=¦Ìm1gcos¦È£¬ËùÒÔ£¬$tan¦È=\frac{1}{8}$¼´$¦È=arctan\frac{1}{8}$£»
£¨2£©¶ÔСÎï¿éÔÚбÃæÉϵÄÔ˶¯Ó¦Óö¯Äܶ¨Àí¿ÉµÃ£º${m}_{1}g{L}_{1}sin37¡ã-¦Ì{m}_{1}g{L}_{1}cos37¡ã=\frac{1}{2}{m}_{1}{v}^{2}$£¬ËùÒÔ£¬Îï¿é»¬ÉÏAµÄËÙ¶È$v=\sqrt{2g{L}_{1}£¨sin37¡ã-¦Ìcos37¡ã£©}=5m/s$£»
Îï¿éÔÚAÉÏ»¬¶¯£¬AB×÷Ϊһ¸öÕûÌ壬һÆðÏòÓÒÔ˶¯£¬µ±ABµÄËÙ¶ÈСÓÚÎï¿éËÙ¶Èʱ£¬Îï¿é×ö¼ÓËÙ¶È$a=\frac{{¦Ì}_{1}{m}_{1}g}{{m}_{1}}={¦Ì}_{1}g=4m/{s}^{2}$µÄÔȼõËÙÔ˶¯£»
ÒòΪ¦Ì2£¨m1+2m2£©g£¾¦Ì1m1g£¬ËùÒÔ£¬AB±£³Ö¾²Ö¹£»
ÄÇô¶ÔÎï¿éÔÚAÉÏÔ˶¯Ó¦Óö¯Äܶ¨Àí¿ÉµÃ£º$-{¦Ì}_{1}{m}_{1}gl=\frac{1}{2}{m}_{1}{{v}_{1}}^{2}-\frac{1}{2}{m}_{1}{v}^{2}$£¬ËùÒÔ£¬Ð¡Îï¿éµ½´ïľ°åAÄ©¶ËµÄËÙ¶È${v}_{1}=\sqrt{{v}^{2}-2{¦Ì}_{1}gl}=3m/s$£»
£¨3£©µ±BµÄËÙ¶ÈСÓÚÎï¿éËÙ¶Èʱ£¬Îï¿éÔÚBÉÏ×ö¼ÓËÙ¶È$a=\frac{{¦Ì}_{1}{m}_{1}g}{{m}_{1}}={¦Ì}_{1}g=4m/{s}^{2}$µÄÔȼõËÙÔ˶¯£¬B×ö¼ÓËÙ¶È$a¡ä=\frac{{¦Ì}_{1}{m}_{1}g-{¦Ì}_{2}£¨{m}_{1}+{m}_{2}£©g}{{m}_{2}}=0.5m/{s}^{2}$µÄ¼ÓËÙÔ˶¯£»
Éè¾¹ýʱ¼ätºó´ïµ½¹²Í¬Ëٶȣ¬ÄÇôÓÐv1-at=a¡ät£¬ËùÒÔ£¬$t=\frac{2}{3}s$£»
ÄÇôÁ½ÕßµÄÏà¶ÔλÒÆ$s={v}_{1}t-\frac{1}{2}a{t}^{2}-\frac{1}{2}a¡ä{t}^{2}=1m£¼l$£»
´ïµ½¹²Í¬ËٶȺó£¬Îï¿éºÍB±£³ÖÏà¶Ô¾²Ö¹£¬¹Ê»õÎï²»»á´Óľ°åBµÄÓҶ˻¬Â䣬ÇÒ»õÎï×îÖÕÍ£ÔÚB°åÉϵÄÖе㣻
´ð£º£¨1£©µ±¦È½ÇÔö´óµ½$arctan\frac{1}{8}$ʱ£¬Ð¡Îï¿éÄÜ´ÓбÃ濪ʼÏ»¬£»
£¨2£©µ±¦ÈÔö´óµ½37¡ãʱ£¬Ð¡Îï¿éµ½´ïľ°åAÄ©¶ËµÄËÙ¶ÈΪ3m/s£»
£¨3£©ÔÚ£¨2£©ÎʵÄÇé¿öÏ£¬»õÎï²»»á´Óľ°åBµÄÓҶ˻¬Â䣻»õÎï×îÖÕÍ£ÔÚB°åÉϵÄÖе㣮
µãÆÀ ¾µäÁ¦Ñ§ÎÊÌâÒ»°ãÏȶÔÎïÌå½øÐÐÊÜÁ¦·ÖÎö£¬ÇóµÃºÏÍâÁ¦¼°Ô˶¯¹ý³Ì×ö¹¦Çé¿ö£¬È»ºó¸ù¾ÝÅ£¶Ù¶¨ÂÉ¡¢¶¯Äܶ¨Àí¼°¼¸ºÎ¹ØϵÇó½â£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | ÍÁÐǵÄÖÊÁ¿ | B£® | ÍÁÐǵÄÃÜ¶È | ||
C£® | ÎÀÐǵĽÇËÙ¶È | D£® | ÍÁÐǵıíÃæÖØÁ¦¼ÓËÙ¶È |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ÆÁÉÏd´¦ÊÇ×Ϲâ | |
B£® | ÆÁÉÏd´¦µÄ¹âÔÚÀâ¾µÖд«²¥ËÙ¶È×î´ó | |
C£® | ÆÁÉÏa´¦ÊÇ×Ϲâ | |
D£® | ÆÁÉÏa´¦µÄ¹âÔÚÀâ¾µÖд«²¥ËÙ¶È×îС |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | ³·È¥ÍâÁ¦FµÄ˲¼ä£¬ÎïÌåAµÄ¼ÓËÙ¶ÈΪgsin¦È | |
B£® | ³·È¥ÍâÁ¦FµÄ˲¼ä£¬ÎïÌåBµÄ¼ÓËÙ¶ÈΪ$\frac{3gsin¦È}{2}$ | |
C£® | A¡¢B»ñµÃ×î´óËÙ¶Èʱ£¬µ¯»ÉÉ쳤Á¿Îª $\frac{3mgsin¦È}{k}$ | |
D£® | ÎïÌåAºÍµ¯»É×é³ÉµÄϵͳ»úеÄÜÊغã |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{A-4}{A+4}$ | B£® | $\frac{{{{£¨A+4£©}^2}}}{{{{£¨A-4£©}^2}}}$ | C£® | $\frac{4A}{{{{£¨A+4£©}^2}}}$ | D£® | $\frac{A+4}{A-4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | Ô×ÓÎüÊÕ¹â×Ó£¬µç×ӵĶ¯ÄܼõС£¬Ô×ӵĵçÊÆÄÜÔö´ó£¬Ô×ÓµÄÄÜÁ¿Ôö´ó | |
B£® | Ô×ÓÎüÊÕ¹â×Ó£¬µç×ӵĶ¯ÄÜÔö´ó£¬Ô×ӵĵçÊÆÄܼõС£¬Ô×ÓµÄÄÜÁ¿Ôö´ó | |
C£® | Ô×ӷųö¹â×Ó£¬µç×ӵĶ¯ÄÜÔö´ó£¬Ô×ӵĵçÊÆÄܼõС£¬Ô×ÓµÄÄÜÁ¿¼õС | |
D£® | Ô×ӷųö¹â×Ó£¬µç×ӵĶ¯ÄܼõС£¬Ô×ӵĵçÊÆÄÜÔö´ó£¬Ô×ÓµÄÄÜÁ¿¼õС |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | £¨CÓëת̨¼äµÄĦ²ÁÁ¦´óСµÈÓÚAÓëB¼äµÄĦ²ÁÁ¦´óС | |
B£® | £¨B¶ÔAµÄĦ²ÁÁ¦´óСһ¶¨Îª3¦Ìmg | |
C£® | Ëæ×Åת̨½ÇËٶȦØÔö´ó£¬AÎïÌå×îÏÈÍÑÀëˮƽת̨ת̨µÄ | |
D£® | ½ÇËÙ¶ÈÒ»¶¨Âú×㣺¦Ø¡Ü$\sqrt{\frac{2¦Ìg}{3r}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com