精英家教网 > 高中物理 > 题目详情
12.如图所示,空间有一垂直于纸面的磁感应强度为0.5T的匀强磁场,一质量为0.2kg且足够长的绝缘木板静止在光滑水平面上,在木板左端无初速度放置一质量为0.1kg、电荷量q=+0.2C的滑块,滑块与绝缘木板之间的动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.t=0时对木板施加方向水平向左,大小为0.6N的恒力F,g取10m/s2,则(  )
A.木板和滑块一直做加速度为2m/s2的匀加速运动
B.滑块开始做加速度减小的变加速运动,最后做速度为10 m/s的匀速运动
C.木板先做加速度为2m/s2的匀加速运动,再做加速度增大的运动,最后做加速度为3 m/s2的匀加速运动
D.t=3s后滑块和木板有相对运动

分析 先求出木块静摩擦力能提供的最大加速度,再根据牛顿第二定律判断当0.6N的恒力作用于木板时,系统一起运动的加速度,当滑块获得向左运动的速度以后又产生一个方向向上的洛伦兹力,当洛伦兹力等于重力时滑块与木板之间的弹力为零,此时摩擦力等于零,此后物块做匀速运动,木板做匀加速直线运动.

解答 解:以木板与滑块整体为研究对象,则在水平方向:F=(M+m)a
代入数据得:a=2m/s2
滑块向左做加速运动,由左手定则可知,受到的洛伦兹力的方向向上,当达到最大速度时:qvB=mg
代入数据得:v=10m/s
A、由于滑块受到的洛伦兹力的方向向上,当洛伦兹力的大小与重力大小相等时,滑块将离开木板做匀速直线运动.故A错误;
B、滑块与绝缘木板之间的动摩擦因数为0.5,则最大静摩擦力约为:fmax=μmg=0.5×0.1×10=0.5N
滑块随木板做加速运动,开始时的摩擦力:f=ma=0.1×2=0.2N<0.5N
可知只有当滑块与木板之间的摩擦力小于0.2N时,滑块的加速度才能开始减小,所以滑块先做匀加速直线运动,再做加速度减小的变加速运动,最后做匀速运动.故B错误,C错误;
D、当滑块受到的摩擦力是0.2N时,则:f=μN
所以:N=$\frac{f}{μ}=\frac{0.2}{0.5}=0.4$N
又:N+qv′B=mg
v′=at′
代入数据得:v′=6m/s,t′=3s
可知t=3s后滑块和木板有相对运动.故D正确.
故选:D

点评 本题主要考查了牛顿第二定律的直接应用,要求同学们能正确分析木板和滑块的受力情况,进而判断运动情况.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

2.如图甲所示,有一倾角为30°的光滑固定斜面,斜面底端的水平面上放一质量为M的木板,木板与水平面间的摩擦因素为0.1.开始时质量为m=1kg的滑块在水平向左的力F作用下静止在斜面上,今将水平力F变为水平向右,当滑块滑到木板上时撤去力F,木块滑上木板的过程不考虑能量损失.此后滑块和木板在水平面上前2s运动的v-t图象如图乙所示,g=10m/s2.求
(1)水平作用力F的大小;
(2)滑块静止在斜面上的位置离木板上表面的高度h;
(3)木板的质量;
(4)木板在水平面上移动的距离.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.舰载战斗机在运动的航母上降落,风险之高,难度之大,一向被喻为:“刀尖上的舞蹈”.舰载战斗机的降落可简化为下列物理模型:时速为3km/h的舰载机在航母阻拦系统的帮助下做匀减速运动100m后安全停下.而以时速250km/h的普通战斗机在机场上降落需滑行1000m.g取10m/s2取试求:
(1)舰载机和战斗机降落的加速度大小之比.
(2)舰载机飞行员在航母上降落时所受的水平方向的作用力与其自身的体重之比.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

20.如图所示,倾斜轨道的下端与半径为R的圆轨道平滑连接,现在使小球从弧形轨道上端距地面2R的A点由静止滑下,进入圆轨道后沿圆轨道运动,轨道摩擦不计.试求:
(1)小球在最低点B时对轨道的压力大小;
(2)若使小球能过圆轨道最高点C,则释放小球时,A′点距离地面的高度至少是多少?

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

7.如图,在倾角为α的固定光滑斜面上,有一用绳子栓着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为(  )
A.$\frac{g}{2}$sinαB.1.5gsinαC.gsinαD.2gsinα

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

17.试根据表中数据,当E球达到收尾速度时,所受空气阻力为(  )
A.1×10-2NB.1×10-3NC.1×10-4ND.1×10-5N

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

4.如图所示,光滑固定的竖直杆上套有一个质量为m的小物块A,不可伸长的轻质细绳左端与物块A 相连,绕过固定在墙壁上、大小可忽略的定滑轮D后,右端作用恒定拉力F,虚线CD水平,间距为d,此时连接物块A的细绳与竖直杆的夹角为37°,物块A恰能保持静止.现瞬间调整绳右端的拉力为 F1=4F,使得物块从图示位置开始向上运动并通过C点,不计摩擦和空气阻力,重力加速度为g,cos37°=0.8,sin37°=0.6.求:
(1)恒力F的大小;
(2)物块A通过C处时的速度大小.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

1.实验:用如图1所示的装置探究加速度a与力F的关系,带滑轮的长木板水平放置,弹簧测力计固定在墙上.

(1)实验时,一定要进行的操作是A(填选项前的字母).
A.小车靠近打点计时器,先接通电源,再释放小车,打出一条纸带,根据纸带的数据求出加速度a,同时记录弹簧测力计的示数F.
B.改变小车的质量,打出几条纸带
C.用天平测出沙和沙桶的总质量
D.为减小误差,实验中一定要保证沙和沙桶的总质量远小于小车的质量
(2)若要把小车所受拉力视为小车所受的合力,在进行上述实验操作之前,首先应该完成的实验步骤是平衡摩擦力.
(3)根据实验数据,画出了如图2所示的a-F图象,测得斜率为k,则小车的质量为$\frac{2}{k}$.
(4)若某次实验,求得小车的加速度为a,则此时沙和沙桶的加速度为2a.
(5)若弹簧秤的读数为F,则F小于mg(m为沙和桶的总质量)(填“大于”、“等于”或“小于”).

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

2.如图所示,在距水平地面高为0.4m处,水平固定一根长直光滑杆,在杆上P点固定一定滑轮,滑轮可绕水平轴无摩擦转动,在P点的右边,杆上套有一质量m=2kg小球A,半径R=0.3m的光滑半圆形细轨道,竖直地固定在地面上,其圆心O在P点的正下方,在轨道上套有一质量也为m=2kg的小球B,用一条不可伸长的柔软细绳,通过定滑轮将两小球连接起来,杆和半圆形轨道在同一竖直面内,两小球均可看做质点,且不计滑轮大小的影响,(g=10m/s2),现给小球A一个水平向右的合力F=55N.求:
(1)把小球B从地面拉到P点正下方C点过程中,重力对小球B做的功?
(2)把小球B从地面拉到P点正下方C点过程中,力F做的功?
(3)小球B运动到P点正下方C点时,A、B两球的速度大小?
(4)小球B被拉到离地多高时与小球A速度大小相等?

查看答案和解析>>

同步练习册答案