精英家教网 > 高中物理 > 题目详情
11.如图所示,一质量为M=3.0kg的平板车静止在光滑的水平地面上,其右侧足够远处有一障碍物A,质量为m=2.0kg的b球用长l=2m的细线悬挂于障碍物正上方,一质量也为m的滑块(视为质点),以υ0=7m/s的初速度从左端滑上平板车,同时对平板车施加一水平向右的、大小为6N的恒力F,当滑块运动到平板车的最右端时,二者恰好相对静止,此时撤去恒力F.当平板车碰到障碍物A时立即停止运动,滑块水平飞离平板车后与b球正碰并与b粘在一起.已知滑块与平板车间的动摩擦因数μ=0.3,g取10m/s2,求:
(1)撤去恒力F前,滑块、平板车的加速度各为多大,方向如何?
(2)撤去恒力F时,滑块与平板车的速度大小.
(3)悬挂b球的细线能承受的最大拉力为50N,a、b两球碰后,细线是否会断裂?(要求通过计算回答)

分析 (1)撤去恒力F前,滑块受到水平向左的滑动摩擦力,平板车受到水平向右的滑动摩擦力,根据牛顿第二定律求解加速度.
(2)滑块滑至平板车的最右端过程中,根据速度公式v=v0+at,分别得到滑块、平板车的速度的表达式,联立求解平板车的速度.
(3)由(2)问求出滑块与小球碰撞前速度,滑块与小球碰撞过程,动量守恒,可求出碰后共同速度,由牛顿第二定律求出细线的拉力大小,与最大拉力比较,判断细线是否会断裂.

解答 解:(1)对滑块,由牛顿第二定律得:al=$\frac{μmg}{m}=μg=0.3×10=3m/{s}^{2}$,方向水平向左
对平板车,由牛顿第二定律得:a2=$\frac{F+μmg}{M}=\frac{6+0.3×2.0×10}{3.0}=4m/{s}^{2}$,方向水平向右
(2)设经过时间tl滑块与平板车相对静止,此时撤去恒力F,共同速度为vl
则:v1=v0-altl    vl=a2tl  
解得:t1=1s  v1=4m/s 
(3)滑块与小球碰撞,动量守恒选取向右为正方向,得:mvl=2mv2
解得v2=2m/s  
设细线拉力为T,T-2mg=2m$\frac{{v}_{2}^{2}}{l}$
T=2mg+2m$\frac{{v}_{2}^{2}}{l}$
代入数值得:T=48N<50N细线不会断裂
答:(1)撤去恒力F前,滑块、平板车的加速度各为3m/s2,方向水平向左和4m/s2,方向水平向右.
(2)撤去恒力F时,滑块与平板车的速度大小是4m/s.
(3)a、b两球碰后,细线不会断裂.

点评 本题通过分析滑块和平板车的受力情况分析其运动情况,再根据牛顿第二定律、运动学公式及位移关系、速度关系相结合求解板长.碰撞过程的基本规律是动量守恒.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:填空题

1.测一个待测电阻Rx(约200Ω)的阻值,除待测电阻外,实验室提供了如下器材:
电源电动势3V,内阻不计;
电流表A1:量程0〜10mA、内阻r1约为50Ω;
电流表A2:量程0〜500uA、内阻r2=1000Ω;
滑动变阻器R1:最大阻值20Ω、额定电流2A;
电阻箱R2:阻值范围0〜9999Ω.
(1)由于没有提供电压表,为了测定待测电阻两端的电压,应选电流表A2与电阻箱R2连接,将其改装成电压表.
(2)对于下列测量Rx的四种电路图,为了测量准确且方便应选图乙.

(3)实验中将电阻箱R2的阻值调到4000Ω,再调节动变阻器R1,当滑片滑到某位置时,得到两表的示数如图所示,可测得待测电阻Rx的测量值是187.5Ω,真实值是194.8Ω.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

2.一个位于x=0处的波源,从平衡位置开始沿y轴正方向做简谐运动,其振动图象如图所示.该波源产生的简谐横波沿x轴正方向传播,波速为10m/s.则关于在x=10m处的质点P,下列说法正确的有是(  )
A.质点P开始振动的方向沿y轴正方向
B.质点P的周期为0.4s,它的运动速度为10m/s
C.质点P已经开始振动后,若某时刻波源在波峰,则质点P一定在波谷
D.质点P已经开始振动后,若某时刻波源在波谷,则质点P也一定在波谷
E.若某时刻质点P振动的速度方向沿y轴负方向,则该时刻波源处质点振动的速度方向沿y轴正方向

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

19.“描绘小灯泡的伏安特性曲线”实验要求小灯泡两端的电压能从O到额定电压之问连续调节.某同学连接的实物电路如图.
①由图可知,该同学实物连线时是将电流表采用外接(填“内”或“外”)的方法接入电路.
②该同学发现此实物电路不满足实验要求,请你在图上补画一条连接线(代替导线),以满足实验要求.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

6.如图所示abcdef装置固定在水平地面上,光滑表面abcd由倾角为37°的斜面ab、圆心为O的圆弧bc、水平面cd平滑连接.装置左端离地高度0.8m.物体B静止于d点,物体A由a点静止释放紧贴光滑面滑行后与B粘合在一起,最后抛到水平地面上,落地点与装置左端水平距离为1.6m.A、B的质量均为m=2kg,且可视为质点,a、b两点间距离sab=3m,g取10m/s2,sin37°=0.6,cos37°=0.8.求:
(1)A滑到b点的速度大小?
(2)A滑到d点与B碰撞前的速度大小?
(3)A滑到圆弧末端c对装置的压力多大?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.小明同学设计了如图甲所示的多用实验电路,实验器材有:干电池组(电动势约3V,内阻约2Ω)、电流表(量程0.6A,RA=0.8Ω)、电阻箱R1(0~99.99Ω)、滑动变阻器R2(0~10Ω)、开关两个及导线若干.现利用该装置来测量电源电动势和内电阻.
(1)利用如图甲电路测电源电动势和内电阻的实验步骤.
①在闭合开关前,调节电阻R1或R2至最大值(最大值或最小值),之后闭合开关S1,闭合(闭合或断开)S2
②调节电阻R1(R1或R2),得到一系列电阻值R和电流I数据.
③断开开关,整理实验仪器.
(2)图乙是由实验数据绘出的$\frac{1}{I}$-R图象,图象纵轴截距与电源电动势的乘积代表RA+r,电源电动势E=6.0V,内阻r=2.8Ω.(计算结果保留两位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.如图所示,三个质量均为m=1kg的滑块A、B、C置于光滑水平面上.水平面右端与水平传送带之间无缝隙连接,传送带长度L=4m,皮带轮沿顺时针方向转动,带动皮带以恒定速率v=3m/s匀速传动.传送带右下方有一光滑圆弧固定轨道,其半径R=0.6m,直径FE竖直,∠DOF=120°.开始时滑块B、C之间连接有(注:弹簧与滑块C无栓接)一被压缩得不能再压缩的轻弹簧,弹簧被锁定并处于静止状态.滑块A以初速度v0=2m/s沿B、C连线方向向B运动,与B碰撞后粘合在一起,碰撞时间极短,此时连接B、C的弹簧突然解除锁定,弹簧伸展,从而使C与A、B分离.滑块C脱离弹簧后以速度v1=2m/s滑上传送带,并从右端水平飞出后,由D点沿圆弧切线落入圆轨道,已知滑块C与传送带之间的动摩擦因数μ=0.2,重力加速度g取10m/s2.(滑块A、B、C视为质点)求:

(1)滑块C从传送带右端滑出时的速度大小.
(2)判断滑块C能否沿光滑圆轨道到达最高点F,若能,求出滑块C对圆轨道F点的压力大小.若不能,请说明理由?
(3)弹簧最初的弹性势能EP

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

20.一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M,高h,现有一个小物块,沿光滑斜面下滑,当小物块从顶端下滑到底端时,斜面体在水平面上移动的距离是$\frac{mh}{(M+m)tanα}$.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

1.在绝热过程(系统与外界没有热传递的过程)中,外界对气体做功,气体的内能将如何变化?气体吸收热量而保持体积不变,它的内能将如何变化?

查看答案和解析>>

同步练习册答案