精英家教网 > 高中物理 > 题目详情
8.如图所示,一个质量为M长为L的圆管竖直放置,顶端塞有一个质量为m的弹性小球,M=4m,球和管间的滑动摩擦力和最大静摩擦力大小均为4mg.管从下端离地面距离为H处自由落下,运动过程中,管始终保持竖直,每次落地后向上弹起的速度与落地时速度大小相等,不计空气阻力,重力加速度为g.求:
(1)管第一次落地弹起时管和球的加速度;
(2)管第一次落地弹起后,若球没有从管中滑出,则球与管达到相同速度时,管的下端距地面的高度;
(3)管第二次弹起后球不致滑落,L应满足什么条件.

分析 (1)根据v02=2gH求出圆管底端落地前瞬间的速度.根据牛顿第二定律分别求出管反弹后,球和管的加速度,从而得知球相对于管的加速度,以管为参考系,根据速度位移公式求出球相对于管静止时的相对位移,即可求解.
(2)根据管上升的加速度,以及相对加速度分别求出管从碰地到它弹到最高点所需时间和管从碰地到与球相对静止所需的时间,比较两个时间知道球与管的运动情况,再根据运动学公式求出管上升的最大高度.
(3)根据运动学公式,即可求解

解答 解:(1)管第一次落地弹起时,管的加速度${a_1}=\frac{4mg+4mg}{4m}=2g$,
方向向下
球的加速度${a_2}=\frac{f-mg}{m}=3g$,方向向上
(2)取竖直向下为正方向.球与管第一次碰地时速度${v_0}=\sqrt{2gH}$,方向向下.
碰地后管的速度${v_1}=-\sqrt{2gH}$,方向向上;球的速度${v_2}=\sqrt{2gH}$,方向向下
若球刚好没有从管中滑出,设经过时间t1,球管速度v相同,则有-v1+a1t1=v2-a2t1${t_1}=\frac{{2{v_0}}}{{{a_1}+{a_2}}}=\frac{{2\sqrt{2gH}}}{5g}$
又管从碰地到它弹到最高点所需时间t2,则:${t_2}=\frac{v_0}{a_1}=\frac{{\sqrt{2gH}}}{2g}$
因为t1<t2,说明管在达到最高点前,球与管相对静止,故管从弹起经t1这段时间上升的高度为所求.得${h_1}={v_1}t-\frac{1}{2}{a_1}t_1^2=\frac{2v_1^2}{5g}-\frac{4v_1^2}{25g}=\frac{12}{25}H$
(3)球与管达到相对静止后,将以速度v、加速度 g竖直上升到最高点,由于$v={v_2}-{a_2}{t_1}=-\frac{1}{5}\sqrt{2gH}$,
故这个高度是${h_2}=\frac{v^2}{2g}=\frac{{{{(\frac{1}{5}\sqrt{2gH})}^2}}}{2g}=\frac{1}{25}H$
因此,管第一次落地弹起后上升的最大高度$Hm={h_1}+{h_2}=\frac{13}{25}H$
这一过程球运动的位移$s={v_0}{t_1}-\frac{1}{2}{a_2}t_1^2=\frac{8}{25}H$
则球与管发生相对位移${s_1}={h_1}+s=\frac{4}{5}H$
当管与球从Hm再次下落,第二次落地弹起中,发生的相对位移由第一次可类推知:${s_2}=\frac{4}{5}{H_m}$
所以管第二次弹起后,球不会滑出管外的条件是s1+s2<L
即L应满足条件$L>\frac{152}{125}H$
答:(1)管第一次落地弹起时管和球的加速度分别为2g,3g;
(2)管第一次落地弹起后,若球没有从管中滑出,则球与管达到相同速度时,管的下端距地面的高度为$\frac{12}{25}H$;
(3)管第二次弹起后球不致滑落,L应满足$L>\frac{152}{125}H$

点评 本题的难点在于管和球的运动情况难于判断,关键通过计算理清球和管的运动规律,结合牛顿第二定律和运动学公式进行求解

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

18.一列简谐波沿x轴正方向传播,在t=0时刻的波形图如图所示,该时刻波恰好传播到Q点,已知这列波在质点P处出现两次波峰的最短时间是0.2s,则:(1)这列波的波速是多少?
(2)再经过多少时间,质点R才能第一次到达波峰及这段时间里质点R通过的路程是多少?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

19.边长为a的单匝正方形线圈在磁感应强度为B的匀强磁场中,以一条边MN为轴匀速转动,角速度为ω,转动轴与磁场方向垂直,若线圈电电阻为R,从转轴所在的边接出两条导线并串联一阻值也为R的电阻,如图所示,电压表为理想电表,求:
(1)开头断开时电压表示数;
(2)从图示位置开始计时并闭合开关,t=$\frac{π}{4ω}$时电压表的示数;
(3)从图示位置开始计时并闭合开关,线圈平面转过90°角的过程中流过电阻R的电荷量.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

16.下列说法正确的是(  )
A.布朗运动是液体分子的运动,它说明分子永不停息的做无规则热运动
B.气体分子单位时间内与单位面积器壁碰撞的次数,与单位体积内的分子数及气体分子的平均动能都有关
C.当分子间的引力和斥力平衡时,分子势能最小
D.如果气体分子总数不变,温度升高,气体分子的平均动能一定增大,因此压强也增大
E.当分子间距离增大时,分子间的引力和斥力都减小

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.如图,质量分别为mA、mB的两个弹性小球A、B,B静止在弹簧上方,B球距离地面的高度h=0.8m,A球在B球的正上方.先将A球释放,下落t=0.4s时,刚好与B球在弹簧上相碰,碰撞时间极短,忽略空气阻力,碰撞中无动能损失.已知mB=3mA,两球运动始终在竖直方向,重力加速度大小g=10m/s2.求:
(1)A球与B球碰撞前瞬间的速度;
(2)A球第一次反弹到达最高点时距地面的高度.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

13.如图所示,光滑圆弧AB的半径r=0.8m,有一质量为m=1.0kg的物体自A点由静止开始沿弧面下滑,到B点后又沿水平面滑行,最后停止在水平面上的C点.已知物体与水平面之间的动摩擦因数μ=0.4,问:
(1)物体到达B点时的速度是多少?
(2)B、C之间的距离是多少?
(3)若使物体能从C点回到A点,至少应在C点给物体多大的初速度?(g取10m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

20.滑板是青少年喜爱的体育运动,如图所示,一位少年正在进行滑板运动.图中ABD是同一水平路面,BC是一段R=4m的圆弧路面,圆弧的最高点G与其圆心O在同一竖直线上,BC对应的圆心角为37°,该少年从A点由静止开始运动,他在AB路段单腿用力蹬地,然后冲上圆弧路段到达C点,从C点水平抛出,其落地点与C点的水平距离为1.6m.如果该少年和滑板可视为一个质点,总质量为40kg,不计滑板与各路段之间的摩擦力以及经过B点时的能量损失.已知重力加速度g=10m/s2,cos37°=0.8,sin37°=0.6.求:
(1)在C点时该少年对地面的压力;
(2)青少年在AB段所做的功.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

17.如图所示,一个玻璃三棱镜的截面为等腰直角△ABC,∠A为直角,玻璃三棱镜的折射率为$\sqrt{2}$.此截面所在平面内的光线沿平行于BC边的方向射到AB边的中点,对这条光线进入棱镜之后的光路分析正确的是(  )
A.直接射到AC边上,发生全反射现象
B.直接射到BC边上,发生全反射现象
C.直接射到AC边上,部分光线从AC边射出
D.直接射到BC边上,部分光线从BC边射出

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

18.如图所示,横截面为$\frac{1}{4}$圆周的柱状玻璃棱镜AOB,有一束单色光垂直于OA面C点经玻璃砖AB面折射后与OB延长线相交于P点,已知玻璃砖半径R=5cm,CO之间的距离d1=3cm,P到O的距离d2=14.5cm.取tan74°=3.5,sin37°=0.6,cos37°=0.8,求:
①该玻璃砖的折射率.
②该单色光向A平移距离OB至少多远时,它将不能从AB面直接折射出来.

查看答案和解析>>

同步练习册答案