精英家教网 > 高中物理 > 题目详情
20.如图甲所示,两平行金属板MN、PQ的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,不计重力的带电粒子沿板间中线垂直电场方向源源不断地射入电场,粒子射入电场时的初速度为v0,初动能均为Ek.已知t=0时刻射入电场的粒子刚好沿上板右边缘垂直电场方向射出电场.则(  )
A.不同时刻射入电场的粒子,射出电场时的速度方向可能不同
B.t=0之后射入电场的粒子有可能会打到极板上
C.若入射速度加倍成2v0,则粒子从电场出射时的侧向位移与v0相比必定减半
D.所有粒子在经过电场过程中最大动能都不可能超过2Ek

分析 粒子在平行极板方向不受电场力,做匀速直线运动;t=0时刻射入电场的带电粒子沿板间中线垂直电场方向射入电场,沿上板右边缘垂直电场方向射出电场,竖直方向分速度变化量为零,根据动量定理,竖直方向电场力的冲量的矢量和为零.

解答 解:A、B、粒子在平行极板方向不受电场力,做匀速直线运动,故所有粒子的运动时间相同;
t=0时刻射入电场的带电粒子沿板间中线垂直电场方向射入电场,沿上板右边缘垂直电场方向射出电场,说明竖直方向分速度变化量为零,根据动量定理,竖直方向电场力的冲量的矢量和为零,故运动时间为周期的整数倍;故所有粒子最终都垂直电场方向射出电场;
由于t=0时刻射入的粒子始终做单向直线运动,竖直方向的分位移最大,故所有粒子最终都不会打到极板上;故A错误,B错误;
C、若入射速度加倍成2v0,则粒子从电场出射时间减半的侧向位移与时间的平方成正比,侧向位移与原v0相比必变成原来的四分之一;故C错误;
D、t=0时刻射入的粒子竖直方向的分位移最大,为$\frac{d}{2}$;
根据分位移公式,有:$\frac{d}{2}$=$\frac{0+{v}_{ym}}{2}•\frac{L}{{v}_{0}}$
由于L=d
故:vym=v0
故最大动能EK′=$\frac{1}{2}$m(v02+v2ym)=2EK,故D正确;
故选:D.

点评 本题关键根据正交分解法判断粒子的运动,明确所有粒子的运动时间相等,t=0时刻射入的粒子竖直方向的分位移最大,然后根据分运动公式列式求解.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

13.“辽宁号”航母舰载机成功突破了阻拦着舰、滑跃起飞的关键技术.甲板上的阻拦索对飞机着舰具有关键作用,在短短数秒内使战机速度从数百公里的时速减小为零,并使战机滑行距离不超过百米.(取g=10m/s2

(1)设飞机总质量m=2.0×104kg,着陆在甲板的水平部分后在阻拦索的作用下,速度由v0=l00m/s滑行50m后停止下来,水平方向其他作用力不计,此过程可视为匀减速运动.求飞机的滑行时间t.
(2)在第(1)问所述的减速过程中,飞行员所受的阻力是飞行员自身重力的多少倍?
(3)一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替.如图2(a)所示,曲线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点作一圆,在极限情况下,这个圆就叫作A点的曲率圆,其半径R叫作A点的曲率半径.航母飞行甲板水平,前端上翘,水平部分与上翘部分平滑连接,连接处D点,如图2(b)所示.已知飞机起落架能承受竖直方向的最大作用力为飞机自重的16倍,飞机安全起飞经过D点时速度的最大值vm=150m/s.求D点的曲率半径R.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

14.如图所示,一辆上表面光滑的平板车长L=4m,平板车上表面离地面高度为h=1.25m,平板车上后端有一挡板,紧靠挡板处有一可看成质点的小球,开始时小球与平板车一起向前做匀速运动,速度大小为v0=4.5m/s.某时刻小车开始刹车,加速度a=2.0m/s2.经过一段时间,小球从平板车前端滑落并落到水平地面上,设小球离家平板车对加速度没有影响.求:
(1)从刹车到小球离开平板车所用的时间;
(2)小球离开平板车后,小球落地时与平板车前端距离.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

8.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生质量为m、电荷量为+q的粒子,在加速电压为U的加速电场中被加速.所加磁场的磁感应强度、加速电场的频率可调,磁场的磁感应强度最大值为Bm和加速电场频率的最大值fm.则下列说法正确的是(  )
A.粒子第n次和第n+1次半径之比总是$\sqrt{n+1}$:$\sqrt{n}$
B.粒子从静止开始加速到出口处所需的时间为t=$\frac{{πB{R^2}}}{2U}$
C.若fm<$\frac{{q{B_m}}}{2πm}$,则粒子获得的最大动能为Ekm=2π2mfm2R2
D.若fm>$\frac{{q{B_m}}}{2πm}$,则粒子获得的最大动能为Ekm=$\frac{{{{(q{B_m}R)}^2}}}{2m}$

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

15.下列关于热现象的说法正确的是(  )
A.一定质量的100℃的水吸收热量后变成100℃的水蒸气,系统的内能保持不变
B.对某物体做功,一定会使该物体的内能增加
C.气体分子热运动的平均动能与分子间势能分别取决于气体的温度和体积
D.功可以全部转化为热,但热量不能全部转化为功

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

5.用等势线描绘电场,是研究电场的一种科学方法.如图所示,A、B为水平放置的平行板电容器,两板间所加电压为120V,两板间距为12cm,图中所绘实线为平行板电容器部分等势线.a、b是等 势线上的两点,b点的场强大小为Eb.下列判断可能正确的是(  )
A.Eb=1000V/m,电子由a点移到b点电势能增加60eV
B.Eb=1000V/m,电子由a点移到b点电势能减少30eV
C.Eb=700V/m,电子由a点移到b点电势能增加60eV
D.Eb=700V/m,电子由a点移到b点电势能减少30eV

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

12.图甲为一列简谐横波在t=0.10s时刻的波形图,P是平衡位置为x=1.0m处的质点,Q是平衡位置为x=4.0m处的质点,图乙为质点Q的振动图象,则(  )
A.t=0.15s时,质点Q的加速度达到正向最大
B.质点Q简谐运动的表达式为x=10sin$\frac{π}{2}$t(cm)
C.从t=0.10s到t=0.25s,质点P通过的路程为30cm
D.从t=0.10s到t=0.25s,该波沿x轴负方向传播了6m

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

9.图甲所示的理想变压器原、副线圈匝数比为55:7,图乙是该变压器原线圈两端输入的交变电压u的图象,副线圈中L是规格为“28V,12W“的灯泡,R0是定值电阻,R是滑动变阻器,图中各电表均为理想交流电表,以下说法正确的是(  )
A.流过灯泡L的电流每秒钟方向改变50次
B.滑片P向上滑动的过程中,灯泡L能正常发光,A2表示数变小
C.滑片P向上滑动的过程中,A1表示数变大,V1表示数不变
D.原线圈两端输入电压的瞬时值表达式为u=220sinl00π•t(V)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

10.如图甲所示,一质量为1kg的带电小木块放置在绝缘的粗糙水平地面上做直线运动.木块和地而间的动摩擦因数为μ=0.4,空间存在水平方向的匀强电场,场强方向和大小均可变,t=0时刻小木块受到电场力F的作用.且向右运动,其速度-时间图象如图乙所示,取向右为正方向.则(  )
A.在0~4s内小木块做匀减速运动B.在2~4s内电场力F的方向向右
C.在0~6s内电场力F一直做正功D.在0~6s内小木块的位移为4m

查看答案和解析>>

同步练习册答案