精英家教网 > 高中物理 > 题目详情
17.下列关于物理学中的思想和方法说法不正确的是(  )
A.瞬时速度的概念用到了极限的思想
B.用比值法来定义物理概念,速度v=$\frac{△x}{△t}$和 加速度 a=$\frac{F}{m}$ 都是采用比值法定义的
C.合力和分力用到了等效替代的思想
D.推导匀变速直线运动的位移公式时,用到了微元法

分析 理想化模型是抓主要因素,忽略次要因素得到的.重心、合力等体现了等效替代的思想,速度v=$\frac{△x}{△t}$是比值定义法,瞬时速度定义用了数学极限思想.

解答 解:A、为研究某一时刻或某一位置时的速度,我们采用了取时间非常小,即让时间趋向无穷小时的平均速度作为瞬时速度,即采用了极限思维法,故A正确;
B、加速度与F和m都有关系,所以a=$\frac{F}{m}$ 不是采用比值法定义的,故B错误;
C、力的合成与分解实验中,应用了等效替代法,故C正确;
D、在利用速度一时间图象推导匀变速直线运动的位移公式时,使用的是微元法,故D正确;
本题选错误的
故选:B

点评 在高中物理学习中,我们会遇到多种不同的物理分析方法,这些方法对我们理解物理有很大的帮助;故在理解概念和规律的基础上,更要注意科学方法的积累与学习.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

7.如图所示,水平放置体积为V0的矩形容器内打一个薄的活塞,活塞的截面积为S,与气缸内壁之间的滑动摩擦力为f,最大静摩擦力近似等于滑动摩擦力.在气缸内充有一定质量的理想气体,初始状态体积为$\frac{1}{3}$V0,温度为T0,气体压强与外界大气均为P0.现缓慢加热气体,使活塞缓慢移动至气缸口,求:
①活塞刚移动时,气体的温度;
②活塞刚移动至气缸口时,气体的温度.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

8.半径为R的半圆柱形玻璃砖的横截面如图所示,O为圆心,光线Ⅰ沿半径方向从a处射人玻璃后,恰在O点发生全反射.另一条光线Ⅱ平行于光线Ⅰ从最高点b射人玻璃砖后,折射到MN上的d点,测得Od=$\frac{1}{4}$R.则玻璃砖的折射率为(  )
A.n=$\sqrt{17}$B.n=2C.$\root{4}{17}$D.n=3

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

5.如图所示为磁悬浮列车模型,质量M=1kg的绝缘板底座静止在粗糙水平地面上,绝缘板底座与水平地面间动摩擦因数μ1=0.1.磁场中的正方形金属框ABCD为动力源,其质量m=1kg,边长为1m,电阻为$\frac{1}{16}$Ω,与绝缘板间的动摩擦因数μ2=0.4,OO′为AD、BC的中点.在金属框内有可随金属框同步移动的周期性变化磁场,图中B1、B2的指向分别为各自的正方向.OO′CD区域内磁场如图a所示,CD恰在磁场边缘以外;OO′BA区域内磁场如图b所示,AB恰在磁场边缘以内.若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,以向右为运动的正方向,g=10m/s2.则金属框从静止释放后(  )
A.若金属框固定在绝缘板上,0~1S内和1S~2S内金属框的加速度均为3m/s2
B.若金属框固定在绝缘板上,0~1S内金属框的加速度为3m/s2,1S~2S内金属框的加速度为-3m/s2
C.若金属框不固定,0~1S内,金属框的加速度为4m/s2,绝缘板仍静止
D.若金属框不固定,0~1S内,金属框的加速度为4m/s2,绝缘板的加速度为2m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

12.如图所示,两块很大的平行导体板MN、PQ产生竖直向上的匀强电场,两平行导体板与一半径为r的单匝线圈连接,在线圈内有一方向垂直线圈平面向里,磁感应强度变化率为$\frac{△{B}_{1}}{△t}$的匀强磁场B1.在两导体板之间还存在有理想边界的匀强磁场,匀强磁场分为Ⅰ、Ⅱ两个区域,其边界为MN、ST、PQ,磁感应强度大小均为B2,方向如图所示,Ⅰ区域高度为d1,Ⅱ区域的高度为d2.一个质量为m、电量为q的带正电的小球从MN板上方的O点由静止开始下落,穿过MN板的小孔进入复合场后,恰能做匀速圆周运动,Ⅱ区域的高度d2足够大,带电小球在运动中不会与PQ板相碰,重力加速度为g.
(1)求线圈内匀强磁场的磁感应强度变化率;
(2)若带电小球运动后恰能回到O点,求带电小球释放时距MN的高度h.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

2.从某高度水平抛出一质量为m小球,经过时间t到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g.求:
(1)物体落地时的速度大小?
(2)重力的平均功率?
(3)落地时重力的瞬时功率?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

9.如图是双人花样滑冰运动中男运动员拉着女运动员做圆锥摆运动的精彩场面.当女运动员恰好离开冰面时,伸直的身体与竖直方向偏角为θ,重心位置做匀速圆周运动的半径为r,已知女运动员的质量为m,求男运动员对女运动员的拉力大小及女运动员转动的周期.

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

6.家用微波炉是一种利用微波的电磁能加热食物的新型灶具,主要由磁控管、波导管、微波加热器、炉门、直流电源、冷却系统、控制系统、外壳等组成.接通电源后,220V交流电经一变压器,一方面在次级(副线圈)产生3.4V交流电对磁控管加热,同时在次级产生2000V高压经整流加到磁控管的阴、阳两极间,使磁控管产生频率为2450MHZ的微波.微波输送至金属制成的加热器(炉腔),被来回反射,微波的电磁作用使食物分子高频地运动而使食物内外同时受热,因而加热速度快,效率高,并能最大限度的保存食物中的维生素.
(1)变压器产生高压的原、副线圈匝数之比为$\frac{11}{100}$.
(2)导体能反射微波,绝缘体可使微波透射,而食物中通常含有的蛋白质、水、脂肪较易吸收微波而转换成热,故在使用微波炉时应BD(填写字母代号)
A.用金属容器盛放食物放入炉中后加热B.用陶瓷容器盛放食物放入炉内加热
C.将微波炉置于磁性材料周围         D.将微波炉远离磁性材料周围.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

7.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图甲所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为$\frac{1}{2}$L,电势为φ2,足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L,假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其他星球对粒子引力的影响.
(1)求粒子到达O点时速度的大小.
(2)如图乙所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有$\frac{2}{3}$能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小.
(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件,试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子.

查看答案和解析>>

同步练习册答案