精英家教网 > 高中物理 > 题目详情
4.如图所示,两根彼此平行放置的光滑金属导轨,其水平部分足够长且处于竖直向下的匀强磁场中,磁感应强度为B.现将质量为m1的导体棒ab放置于导轨的水平段,将质量为m2导体棒cd从导轨的圆弧部分距水平段高为h的位置由静止释放.已知导体棒ad、cd接入电路的有效电阻分别为R1和R2其他部分电阻不计,整个过程中两导体棒与导轨接触良好且未发生碰撞,重力加速度力g.求:
(1)导体棒ab、cd最终速度的大小;
(2)导体棒ab所产生的热量Q1

分析 (1)根据机械能守恒定律求解cd达到底部的速度大小,再根据动量守恒定律求解最终速度;
(2)根据能量守恒定律求解整个过程中系统产生的总热量,再根据能量分配关系可得ab所产生的热量.

解答 解:(1)设cd达到最低点的速度为v0,根据机械能守恒定律可得:
m2gh=$\frac{1}{2}{m}_{2}{v}_{0}^{2}$
解得:v0=$\sqrt{2gh}$,
ab、cd在水平面上运动过程中动量守恒,最终二者的速度相等,取向右为正,根据动量守恒定律可得:
m2v0=(m1+m2)v,
解得:v=$\frac{{m}_{2}}{{m}_{1}+{m}_{2}}\sqrt{2gh}$;
(2)整个过程中系统产生的总热量为:Q=m2gh-$\frac{1}{2}({m}_{1}+{m}_{2}){v}^{2}$=$\frac{{m}_{1}{m}_{2}}{{m}_{1}+{m}_{2}}gh$;
根据能量分配关系可得ab所产生的热量为:Q1=$\frac{{R}_{1}}{{R}_{1}+{R}_{2}}{Q}_{总}$=$\frac{{{m}_{1}{m}_{2}R}_{1}}{{(R}_{1}+{R}_{2})({m}_{1}+{m}_{2})}•gh$.
答:(1)导体棒ab、cd最终速度的大小为$\frac{{m}_{2}}{{m}_{1}+{m}_{2}}\sqrt{2gh}$;
(2)导体棒ab所产生的热量为$\frac{{{m}_{1}{m}_{2}R}_{1}}{{(R}_{1}+{R}_{2})({m}_{1}+{m}_{2})}•gh$.

点评 对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:计算题

3.一质点沿直线从静止开始以1m/s2的加速度做匀加速运动,经过5s后改做匀速直线运动,最后2s时间内质点做匀减速运动直至静止,问:
(1)质点做匀速运动时速度大小是多少?
(2)质点做速减速运动时的加速度大小是多少?

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

15.如图所示,匀强磁场的磁感应强度为B=0.1T,方向垂直于轨道夹平面上,导体ab在光滑轨道上向右匀速运动的速度为v=0.5m/s,导体ab电阻R=0.5Ω,轨道宽L=0.4m,导轨电阻忽略不计,求:
(1)感应电流大小和方向;
(2)使导体ab匀速运动所需的外力大小;
(3)外力做功的功率;
(4)感应电流的功率.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

12.如图所示,足够长且电阻不计的光滑 平行金属导轨MN、PQ竖直放置,间距为L=0.5m,一匀强磁场磁感应强度B=0.2T垂直穿过导轨平面,导轨的上端M与P间连接阻值为R=0.40Ω的电阻,质量为m=0.01kg、电阻不计的金属棒ab垂直紧贴在导轨上.现使金属棒ab由静止开始下滑,经过一段时间金属棒达到稳定状态,这段时间内通过R的电荷量为0.3C,则在这一过程中(g=10m/s2)(  )
A.安培力最大值为0.05 NB.这段时间内下降的高度1.2 m
C.重力最大功率为0.1 WD.电阻产生的焦耳热为0.04 J

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

19.如图所示是风力发电机的外观图,发电机的原理是叶轮旋转带动磁场中的线圈旋转,产生交变电流,当叶轮转速在20r/s左右时,通过齿轮箱使线圈转速稳定到1500r/s,矩形线圈在匀强磁场中绕垂直于磁场的轴转动,线圈的匝数为n=100匝,所围成矩形的面积S=0.04m2,在线圈所在空间内存在磁场B=2×10-2T.以线圈与磁感线垂直时为计时起点,求:
(1)线圈中产生的感应电动势的表达式;
(2)在转过$\frac{π}{2}$的时间内,线圈中产生的平均感应电动势.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

9.如图所示,两等量异种电荷在同一水平线上,它们连线的中点为O,竖直面内的半圆弧光滑绝缘轨道的直径AB水平,圆心在O点,圆弧的半径为R,C为圆弧上的一点,OC为竖直方向的夹角为37°,一电荷量为+q,质量为m的带电小球从轨道的A端由静止释放,沿轨道滚动到最低点时,速度v=2$\sqrt{gR}$,g为重力加速度,取无穷远处电势为零,则下列说法正确的是(  )
A.电场中A点的电势为$\frac{mgR}{q}$
B.电场中B点的电势为$-\frac{2mgR}{q}$
C.小球运动到B点时的动能为2mgR
D.小球运动到C点时,其动能与电势能的和为1.6mgR

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

16.如图所示,质量为m的小物块放在水平转台上,物块与转轴相距为R,假设物块与水平转台之间的最大静摩擦力为重力的k倍,物块随转台由静止开始转动,当转台的转轴由零逐渐增加到某值时,物块即将在转台上滑动,在这一过程中,转台对物块做的功为(  )
A.0B.2πkmgRC.$\frac{1}{2}$kmgRD.2kmgR

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

13.质量为m的汽车以恒定的功率P在平直路面上行驶,行驶过程中受到的阻力大小恒定. 若汽车能达到的最大速率为v,则下列说法正确的是(  )
A.汽车受到阻力大小为$\frac{P}{v}$
B.汽车受到阻力大小为$\frac{v}{P}$
C.当汽车的速率为$\frac{v}{2}$时,汽车的加速度大小为$\frac{P}{mv}$
D.当汽车的速率为$\frac{v}{2}$时,汽车的加速度大小为$\frac{2P}{mv}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

14.如图所示,一质量M=0.4kg的滑块放在光滑水平面上处于静止状态,滑块左侧为一光滑的$\frac{1}{4}$圆弧,水平面恰好与圆弧相切.质量m=0.1kg的小球(视为质点)以v0=5m/s的初速度向右运动冲上滑块.取g=10m/s2.若小球刚好没有冲出$\frac{1}{4}$圆弧的上端,求:
(1)小球上升到滑块上端时的速度大小;
(2)$\frac{1}{4}$圆弧的半径;
(3)滑块获得的最大速度.

查看答案和解析>>

同步练习册答案