(3-3)
(1)1968年,托雷一坎永号油轮在英吉利海峡触礁,有大约8万吨原油泄漏,污染了英国100多千米的海岸线,使25000只海鸟死亡。石油流入海中,危害极大。在海洋中泄漏m=1t原油可覆盖S=12km2的海面,试估算油膜厚度是原油的分子直径的多少倍?(设原油密度为ρ=0.91×103kg/m3,保留一位有效数字,分子直径的数量级D=10-10m)
(2)如图所示,一根足够长的两端开口的粗细均匀的直管,竖直插入很大的水银槽中。有个质量不计的横截面积S=1cm2的活塞A,在管中封闭一段长L=10cm的理想气体。开始时A处于静止状态。现在用力F竖直向上缓慢拉动活塞A,不计管壁对A的摩擦。当F=2N时,A再次静止。设整个过程中环境温度不变,外界大气压p0=1.0×105Pa(约为75cmHg),求:
①A再次静止时的气体压强P2;
②A再次静止时的气体长度L2;
③在此过程中活塞A上升的距离h。
(1)
(2)①0.8×105Pa
②L2=12.5cm
③17.5cm
解析:(1)解:设油膜的厚度为H,分子直径的数量级D=10-10m,则
(6分)
(2)①P2=P0—F/S=1.0×105Pa-2/1×10-4 Pa=0.8×105Pa(4分)
②根据玻意耳定律得到P1 L1S=P2 L2S 1.0×105×10=0.8×105 L2 L2=12.5cm(6分)
③由于内外气体压强的压强差为0.2×105Pa 约等于75cmHg×0.2×105/1.0×105=15cmHg,所以下面管中水银面上升15cm,故活塞上升的距离为增加的气体的长度与下面水银上升的距离之和2.5cm+15cm=17.5cm(4分)
科目:高中物理 来源: 题型:
(2008?东城区三模)某研究性学习小组在探究光的折射过程中,研究折射角与入射角之间的关系,当光由空气斜射入玻璃中时,测得实验数据如下表
|
查看答案和解析>>
科目:高中物理 来源: 题型:
如图,A、B、C、D、E、F为匀强电场中一个边长为10 cm的正六边形的六个顶点,A、B、C三点电势分别为1.0 V、2.0 V、3.0 V,则下列说法正确的是( )
A.匀强电场的场强大小为10 V/m
B.匀强电场的场强大小为
C.电荷量为1.6×10-19C的正点电荷从E点移到F点,电荷克服电场力做功为1.6×10-19 J
D.电荷量为1.6×10-19 C的负点电荷从F点移到D点,电荷的电势能减少4.8×10-19 J
查看答案和解析>>
科目:高中物理 来源: 题型:
(14分)某兴趣小组想要探究单摆的周期T与摆长、摆球质量m的关系:
(1)(4分)为了探究周期T与摆长、摆球质量m的关系,应利用_________法完成此实验;为了准确测量单摆的周期,应使摆球振动稳定后且经过_________位置开始计时。
(2)(4分)他们在探究周期T与摆长的关系时,测得如下5组数据,请在图中选择恰当坐标,作出直观反映周期T与摆长关系的图像。
项目 | 1 | 2 | 3 | 4 | 5 | ||
1.78 | 1.90 | 1.99 | 2.10 | 2.19 | |||
() | 3.19 | 3.60 | 3.99 | 4.40 | 4.79 | ||
() | 0.80 | 0.90 | 1.00 | 1.10 | 1.20 | ||
() | 0.64 | 0.81 | 1.00 | 1.21 | 1.44 |
(3)(3分)根据图像求得当地的重力加速度g=___________m/s2。(保留三位有效数字)
(4)(3分)某学生做实验时固定好装置后先测摆长,然后测出周期,发现测得的重力加速度偏大,原因可能是______(填选项前字母)
A.单摆的悬点未固定紧,振动中出现松动,使摆线增长了
B.把摆球n次经过最低点的时间误记为(n + 1)次经过最低点的时间
C.计时结束时,秒表过早按下
D.单摆所用摆球质量过大
查看答案和解析>>
科目:高中物理 来源:2013届江苏省扬州中学高三下学期期中考试物理试卷(带解析) 题型:计算题
A.(选修模块3-3)(12分)
(1)下列四幅图的有关说法中正确的是
A.分子间距离为r0时,分子间不存在引力和斥力
B.水面上的单分子油膜,在测量油膜直径d大小时可把他们当做球形处理
C.食盐晶体中的钠、氯离子按一定规律分布,具有空间上的周期性
D.猛推木质推杆,气体对外界做正功,密闭的气体温度升高,压强变大
(2)已知某物质摩尔质量为M,密度为ρ,阿伏加德罗常数为NA,则该物质的分子质量为 ,单位体积的分子数为 .
(3)如图,一定质量的理想气体从状态A经等容过程变化到状态B,此过程中气体吸收的热量Q=6.0×102J,
求:
①该气体在状态A时的压强;
②该气体从状态A到状态B过程中内能的增量。
B.(选修模块3-4)(12分)
(1)下列四幅图的有关说法中正确的是
A.由两个简谐运动的图像可知:它们的相位差为/2或者
B.当球与横梁之间存在摩擦的情况下,球的振动不是简谐运动
C.频率相同的两列波叠加时,某些区域的振动加强,某些区域的振动减弱
D.当简谐波向右传播时,质点A此时的速度沿y轴正方向
(2)1905年爱因斯坦提出的狭义相对论是以狭义相对性原理和 这两条基本假设为前提的;在相对于地面以0.8c运动的光火箭上的人观测到地面上的的生命进程比火箭上的生命进程要 (填快或慢)。
(3)如图所示,△ABC为等腰直角三棱镜的横截面,∠C=90°,一束激光a沿平行于AB边射入棱镜,经一次折射后射到BC边时,刚好能发生全反射,求该棱镜的折射率n和棱镜中的光速。
C.(选修模块3-5)(12分)
(1)下列说法正确的是
A.某放射性元素经过19天后,余下的该元素的质量为原来的1/32,则该元素的半衰期为 3.8天
B.a粒子散射实验说明原子核内部具有复杂结构
C.对放射性物质施加压力,其半衰期将减少
D.氢原子从定态n=3跃迁到定态n= 2,再跃迁到定态n = 1,则后一次跃迁辐射的光的波长比前一次的要短
(2)光电效应和 都证明光具有粒子性, 提出实物粒子也具有波动性。
(3)如图所示,水平光滑地面上依次放置着质量均为m ="0.08" kg的10块完全相同的长直木板。质量M =" 1.0" kg、大小可忽略的小铜块以初速度v0="6.0" m/s从长木板左端滑上木板,当铜块滑离第一块木板时,速度大小为v1="4.0" m/S。铜块最终停在第二块木板上。取g="10" m/s2,结果保留两位有效数字。求:
①第一块木板的最终速度
②铜块的最终速度
查看答案和解析>>
科目:高中物理 来源: 题型:阅读理解
第一部分 力&物体的平衡
第一讲 力的处理
一、矢量的运算
1、加法
表达: + = 。
名词:为“和矢量”。
法则:平行四边形法则。如图1所示。
和矢量大小:c = ,其中α为和的夹角。
和矢量方向:在、之间,和夹角β= arcsin
2、减法
表达: = - 。
名词:为“被减数矢量”,为“减数矢量”,为“差矢量”。
法则:三角形法则。如图2所示。将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。
差矢量大小:a = ,其中θ为和的夹角。
差矢量的方向可以用正弦定理求得。
一条直线上的矢量运算是平行四边形和三角形法则的特例。
例题:已知质点做匀速率圆周运动,半径为R ,周期为T ,求它在T内和在T内的平均加速度大小。
解说:如图3所示,A到B点对应T的过程,A到C点对应T的过程。这三点的速度矢量分别设为、和。
根据加速度的定义 = 得:= ,=
由于有两处涉及矢量减法,设两个差矢量 = - ,= - ,根据三角形法则,它们在图3中的大小、方向已绘出(的“三角形”已被拉伸成一条直线)。
本题只关心各矢量的大小,显然:
= = = ,且: = = , = 2=
所以:= = = ,= = = 。
(学生活动)观察与思考:这两个加速度是否相等,匀速率圆周运动是不是匀变速运动?
答:否;不是。
3、乘法
矢量的乘法有两种:叉乘和点乘,和代数的乘法有着质的不同。
⑴ 叉乘
表达:× =
名词:称“矢量的叉积”,它是一个新的矢量。
叉积的大小:c = absinα,其中α为和的夹角。意义:的大小对应由和作成的平行四边形的面积。
叉积的方向:垂直和确定的平面,并由右手螺旋定则确定方向,如图4所示。
显然,×≠×,但有:×= -×
⑵ 点乘
表达:· = c
名词:c称“矢量的点积”,它不再是一个矢量,而是一个标量。
点积的大小:c = abcosα,其中α为和的夹角。
二、共点力的合成
1、平行四边形法则与矢量表达式
2、一般平行四边形的合力与分力的求法
余弦定理(或分割成RtΔ)解合力的大小
正弦定理解方向
三、力的分解
1、按效果分解
2、按需要——正交分解
第二讲 物体的平衡
一、共点力平衡
1、特征:质心无加速度。
2、条件:Σ = 0 ,或 = 0 , = 0
例题:如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。
解说:直接用三力共点的知识解题,几何关系比较简单。
答案:距棒的左端L/4处。
(学生活动)思考:放在斜面上的均质长方体,按实际情况分析受力,斜面的支持力会通过长方体的重心吗?
解:将各处的支持力归纳成一个N ,则长方体受三个力(G 、f 、N)必共点,由此推知,N不可能通过长方体的重心。正确受力情形如图6所示(通常的受力图是将受力物体看成一个点,这时,N就过重心了)。
答:不会。
二、转动平衡
1、特征:物体无转动加速度。
2、条件:Σ= 0 ,或ΣM+ =ΣM-
如果物体静止,肯定会同时满足两种平衡,因此用两种思路均可解题。
3、非共点力的合成
大小和方向:遵从一条直线矢量合成法则。
作用点:先假定一个等效作用点,然后让所有的平行力对这个作用点的和力矩为零。
第三讲 习题课
1、如图7所示,在固定的、倾角为α斜面上,有一块可以转动的夹板(β不定),夹板和斜面夹着一个质量为m的光滑均质球体,试求:β取何值时,夹板对球的弹力最小。
解说:法一,平行四边形动态处理。
对球体进行受力分析,然后对平行四边形中的矢量G和N1进行平移,使它们构成一个三角形,如图8的左图和中图所示。
由于G的大小和方向均不变,而N1的方向不可变,当β增大导致N2的方向改变时,N2的变化和N1的方向变化如图8的右图所示。
显然,随着β增大,N1单调减小,而N2的大小先减小后增大,当N2垂直N1时,N2取极小值,且N2min = Gsinα。
法二,函数法。
看图8的中间图,对这个三角形用正弦定理,有:
= ,即:N2 = ,β在0到180°之间取值,N2的极值讨论是很容易的。
答案:当β= 90°时,甲板的弹力最小。
2、把一个重为G的物体用一个水平推力F压在竖直的足够高的墙壁上,F随时间t的变化规律如图9所示,则在t = 0开始物体所受的摩擦力f的变化图线是图10中的哪一个?
解说:静力学旨在解决静态问题和准静态过程的问题,但本题是一个例外。物体在竖直方向的运动先加速后减速,平衡方程不再适用。如何避开牛顿第二定律,是本题授课时的难点。
静力学的知识,本题在于区分两种摩擦的不同判据。
水平方向合力为零,得:支持力N持续增大。
物体在运动时,滑动摩擦力f = μN ,必持续增大。但物体在静止后静摩擦力f′≡ G ,与N没有关系。
对运动过程加以分析,物体必有加速和减速两个过程。据物理常识,加速时,f < G ,而在减速时f > G 。
答案:B 。
3、如图11所示,一个重量为G的小球套在竖直放置的、半径为R的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L(L<2R),一端固定在大圆环的顶点A ,另一端与小球相连。环静止平衡时位于大环上的B点。试求弹簧与竖直方向的夹角θ。
解说:平行四边形的三个矢量总是可以平移到一个三角形中去讨论,解三角形的典型思路有三种:①分割成直角三角形(或本来就是直角三角形);②利用正、余弦定理;③利用力学矢量三角形和某空间位置三角形相似。本题旨在贯彻第三种思路。
分析小球受力→矢量平移,如图12所示,其中F表示弹簧弹力,N表示大环的支持力。
(学生活动)思考:支持力N可不可以沿图12中的反方向?(正交分解看水平方向平衡——不可以。)
容易判断,图中的灰色矢量三角形和空间位置三角形ΔAOB是相似的,所以:
⑴
由胡克定律:F = k(- R) ⑵
几何关系:= 2Rcosθ ⑶
解以上三式即可。
答案:arccos 。
(学生活动)思考:若将弹簧换成劲度系数k′较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?
答:变小;不变。
(学生活动)反馈练习:光滑半球固定在水平面上,球心O的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图13所示的A位置开始缓慢拉至B位置。试判断:在此过程中,绳子的拉力T和球面支持力N怎样变化?
解:和上题完全相同。
答:T变小,N不变。
4、如图14所示,一个半径为R的非均质圆球,其重心不在球心O点,先将它置于水平地面上,平衡时球面上的A点和地面接触;再将它置于倾角为30°的粗糙斜面上,平衡时球面上的B点与斜面接触,已知A到B的圆心角也为30°。试求球体的重心C到球心O的距离。
解说:练习三力共点的应用。
根据在平面上的平衡,可知重心C在OA连线上。根据在斜面上的平衡,支持力、重力和静摩擦力共点,可以画出重心的具体位置。几何计算比较简单。
答案:R 。
(学生活动)反馈练习:静摩擦足够,将长为a 、厚为b的砖块码在倾角为θ的斜面上,最多能码多少块?
解:三力共点知识应用。
答: 。
4、两根等长的细线,一端拴在同一悬点O上,另一端各系一个小球,两球的质量分别为m1和m2 ,已知两球间存在大小相等、方向相反的斥力而使两线张开一定角度,分别为45和30°,如图15所示。则m1 : m2??为多少?
解说:本题考查正弦定理、或力矩平衡解静力学问题。
对两球进行受力分析,并进行矢量平移,如图16所示。
首先注意,图16中的灰色三角形是等腰三角形,两底角相等,设为α。
而且,两球相互作用的斥力方向相反,大小相等,可用同一字母表示,设为F 。
对左边的矢量三角形用正弦定理,有:
= ①
同理,对右边的矢量三角形,有: = ②
解①②两式即可。
答案:1 : 。
(学生活动)思考:解本题是否还有其它的方法?
答:有——将模型看成用轻杆连成的两小球,而将O点看成转轴,两球的重力对O的力矩必然是平衡的。这种方法更直接、简便。
应用:若原题中绳长不等,而是l1 :l2 = 3 :2 ,其它条件不变,m1与m2的比值又将是多少?
解:此时用共点力平衡更加复杂(多一个正弦定理方程),而用力矩平衡则几乎和“思考”完全相同。
答:2 :3 。
5、如图17所示,一个半径为R的均质金属球上固定着一根长为L的轻质细杆,细杆的左端用铰链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的水平面。由于金属球和木板之间有摩擦(已知摩擦因素为μ),所以要将木板从球下面向右抽出时,至少需要大小为F的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力?
解说:这是一个典型的力矩平衡的例题。
以球和杆为对象,研究其对转轴O的转动平衡,设木板拉出时给球体的摩擦力为f ,支持力为N ,重力为G ,力矩平衡方程为:
f R + N(R + L)= G(R + L) ①
球和板已相对滑动,故:f = μN ②
解①②可得:f =
再看木板的平衡,F = f 。
同理,木板插进去时,球体和木板之间的摩擦f′= = F′。
答案: 。
第四讲 摩擦角及其它
一、摩擦角
1、全反力:接触面给物体的摩擦力与支持力的合力称全反力,一般用R表示,亦称接触反力。
2、摩擦角:全反力与支持力的最大夹角称摩擦角,一般用φm表示。
此时,要么物体已经滑动,必有:φm = arctgμ(μ为动摩擦因素),称动摩擦力角;要么物体达到最大运动趋势,必有:φms = arctgμs(μs为静摩擦因素),称静摩擦角。通常处理为φm = φms 。
3、引入全反力和摩擦角的意义:使分析处理物体受力时更方便、更简捷。
二、隔离法与整体法
1、隔离法:当物体对象有两个或两个以上时,有必要各个击破,逐个讲每个个体隔离开来分析处理,称隔离法。
在处理各隔离方程之间的联系时,应注意相互作用力的大小和方向关系。
2、整体法:当各个体均处于平衡状态时,我们可以不顾个体的差异而讲多个对象看成一个整体进行分析处理,称整体法。
应用整体法时应注意“系统”、“内力”和“外力”的涵义。
三、应用
1、物体放在水平面上,用与水平方向成30°的力拉物体时,物体匀速前进。若此力大小不变,改为沿水平方向拉物体,物体仍能匀速前进,求物体与水平面之间的动摩擦因素μ。
解说:这是一个能显示摩擦角解题优越性的题目。可以通过不同解法的比较让学生留下深刻印象。
法一,正交分解。(学生分析受力→列方程→得结果。)
法二,用摩擦角解题。
引进全反力R ,对物体两个平衡状态进行受力分析,再进行矢量平移,得到图18中的左图和中间图(注意:重力G是不变的,而全反力R的方向不变、F的大小不变),φm指摩擦角。
再将两图重叠成图18的右图。由于灰色的三角形是一个顶角为30°的等腰三角形,其顶角的角平分线必垂直底边……故有:φm = 15°。
最后,μ= tgφm 。
答案:0.268 。
(学生活动)思考:如果F的大小是可以选择的,那么能维持物体匀速前进的最小F值是多少?
解:见图18,右图中虚线的长度即Fmin ,所以,Fmin = Gsinφm 。
答:Gsin15°(其中G为物体的重量)。
2、如图19所示,质量m = 5kg的物体置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物体,使物体能够沿斜面向上匀速运动,而斜面体始终静止。已知斜面的质量M = 10kg ,倾角为30°,重力加速度g = 10m/s2 ,求地面对斜面体的摩擦力大小。
解说:
本题旨在显示整体法的解题的优越性。
法一,隔离法。简要介绍……
法二,整体法。注意,滑块和斜面随有相对运动,但从平衡的角度看,它们是完全等价的,可以看成一个整体。
做整体的受力分析时,内力不加考虑。受力分析比较简单,列水平方向平衡方程很容易解地面摩擦力。
答案:26.0N 。
(学生活动)地面给斜面体的支持力是多少?
解:略。
答:135N 。
应用:如图20所示,一上表面粗糙的斜面体上放在光滑的水平地面上,斜面的倾角为θ。另一质量为m的滑块恰好能沿斜面匀速下滑。若用一推力F作用在滑块上,使之能沿斜面匀速上滑,且要求斜面体静止不动,就必须施加一个大小为P = 4mgsinθcosθ的水平推力作用于斜面体。使满足题意的这个F的大小和方向。
解说:这是一道难度较大的静力学题,可以动用一切可能的工具解题。
法一:隔离法。
由第一个物理情景易得,斜面于滑块的摩擦因素μ= tgθ
对第二个物理情景,分别隔离滑块和斜面体分析受力,并将F沿斜面、垂直斜面分解成Fx和Fy ,滑块与斜面之间的两对相互作用力只用两个字母表示(N表示正压力和弹力,f表示摩擦力),如图21所示。
对滑块,我们可以考查沿斜面方向和垂直斜面方向的平衡——
Fx = f + mgsinθ
Fy + mgcosθ= N
且 f = μN = Ntgθ
综合以上三式得到:
Fx = Fytgθ+ 2mgsinθ ①
对斜面体,只看水平方向平衡就行了——
P = fcosθ+ Nsinθ
即:4mgsinθcosθ=μNcosθ+ Nsinθ
代入μ值,化简得:Fy = mgcosθ ②
②代入①可得:Fx = 3mgsinθ
最后由F =解F的大小,由tgα= 解F的方向(设α为F和斜面的夹角)。
答案:大小为F = mg,方向和斜面夹角α= arctg()指向斜面内部。
法二:引入摩擦角和整体法观念。
仍然沿用“法一”中关于F的方向设置(见图21中的α角)。
先看整体的水平方向平衡,有:Fcos(θ- α) = P ⑴
再隔离滑块,分析受力时引进全反力R和摩擦角φ,由于简化后只有三个力(R、mg和F),可以将矢量平移后构成一个三角形,如图22所示。
在图22右边的矢量三角形中,有: = = ⑵
注意:φ= arctgμ= arctg(tgθ) = θ ⑶
解⑴⑵⑶式可得F和α的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com