精英家教网 > 高中物理 > 题目详情
用金属丝制成的线材(如钢丝、钢筋)受到拉力会伸长,17世纪英国物理学家胡克发现:金属丝或金属杆在弹性限度内它的伸长的长度与拉力成正比,这就是著名的胡克定律,这一发现为后人对材料的研究奠定了重要基础.现在一根用新材料制成的金属杆,长为5m,横截面积0.4cm2,设计要求它受到拉力后的伸长的长度不超过原长的1/1000,问最大拉力多大?由于这一拉力很大,杆又较长,直接测量有困难,但可以选用同种材料制成的样品进行测试,通过测试取得数据如下:
长  度
拉力

伸长
截面积
250N 500N 750N 1000N
1m 0.05cm2 0.04cm 0.08cm 0.12cm 0.16cm
2m 0.05cm2 0.08cm 0.16cm 0.24cm 0.32cm
1m 0.10cm2 0.02cm 0.04cm 0.06cm 0.08cm
(1)测试结果表明线材受拉力作用后伸长与材料的长度成
比,与材料的横截面积成
比.     
(2)上述金属杆承受的最大拉力为
5×103
5×103
N.
分析:由题可知伸长量x与样品的长度、横截面积、所受拉力都有关系,涉及的变量较多,因此采用“控制变量法”来确定它们之间的正、反比关系,然后将各种情况进行汇总,再运用比值定义法初步确定这几个量之间的数量关系,然后根据所得公式来判断样品能承受的最大拉力,以及与什么因素有关.
解答:解:
(1)由表格知:
1、当受到的拉力F、横截面积S一定时,伸长量x与样品长度L成正比,①
2、当受到的拉力F、样品长度L一定时,伸长量x与横截面积S成反比,②
3、当样品长度L、横截面积S一定时,伸长量x与受到的拉力F成正比,③
由1、2的结论,线材受拉力作用后伸长与材料的长度成正比,与横截面积成反比.
(2)由①②③三个结论,可以归纳出,x与L、S、F之间存在一定量的比例关系,设这个比值为k,那么有:
x=k
FL
S
             ④
根据图表提供数据代入解得:
k=
xS
FL
=
0.04×10-2×0.05×10-4
250×1
m2/N
=
2
25
×10-10m2/N

由题意知:待测金属杆M承受最大拉力时,其伸长量为原来的
1
1000
,即5×10-3m;
此时S=0.4cm2=4×10-5m2,L=5m;代入上面的公式④得:
5×10-3=
2
25
×10-10×
F×5
4×10-5

解得:
F=5×103N
故答案为:(1)正、反;
(2)5×103
点评:本题的难度很大,题中共涉及4个变量,在解题过程中,综合应用了控制变量法、归纳法、比值定义法来进行分析、解答,对同学的综合素质要求很高,是一道考查能力的好题.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

用金属制成的线材(如钢丝、钢筋)受到的拉力会伸长,17世纪英国物理学家胡克发现,金属丝或金属杆在弹性限度内的伸长与拉力成正比,这就是著名的胡克定律.这个发现为后人对材料的研究奠定了重要的基础.现有一根用新材料制成的金属杆,长为4m,横截面积为0.8cm2,设计要求它受到拉力后的伸长不超过原长的1/1 00,由于这一拉力很大,杆又较长,直接测试有困难,就选用同种材料制成样品进行测试,通过测试取得数据如右图:
长度/m 截面积S/cm2\伸长x/m\拉力F/N 250 500 750 1000
1 0.05 0.04 0.08 0.12 0.16
2 0.05 0.08 0.16 0.24 0.32
3 0.05 0.12 0.24 0.36 0.48
1 0.10 0.02 0.04 0.06 0.08
1 0.20 0.01 0.02 0.03 0.04
(1)根据测试结果,推导出线材伸长x与材料的长度L、材料的横截面积S及拉力F的函数关系为x=
kFL
s
kFL
s
(用所给字母表示,比例系数用k表示).
(2)在寻找上述关系中,运用
控制变量法
控制变量法
科学研究方法.

查看答案和解析>>

科目:高中物理 来源: 题型:

英国物理学家胡克发现,金属丝或金属杆在弹性限度内的伸长与拉力成正比,这就是著名的胡克定律.这个发现为后人对材料的研究奠定了重要的基础.现有一根用新材料制成的金属杆,长为4m,横截面积为0.8cm2,设计要求它受到拉力后的伸长不超过原长的
1
1000
,由于这一拉力很大,杆又较长,直接测量有困难,就选用同种材料制成样品进行测试,通过测试取得的数据如下:
长度L/m   250 500 750 1000
1 0.05 0.04 0.08 0.12 0.16
2 0.05 0.08 0.16 0.24 0.32
3 0.05 0.12 0.24 0.36 0.48
1 0.10 0.02 0.04 0.06 0.08
1 0.20 0.01 0.02 0.03 0.04
(1)根据测试结果,推导出线材伸长量x与材料的长度L、材料的横截面积S与拉力F的函数关系为
x=k?
FL
S
x=k?
FL
S

(2)在寻找上述关系中,你运用哪种科学研究方法?
控制变量法
控制变量法

(3)通过对样品的测试,求出新材料制成的金属细杆能承受的最大拉力约
10000N
10000N

查看答案和解析>>

科目:高中物理 来源: 题型:

用金属制成的线材(如钢丝、钢筋)受到拉力后会伸长,17世纪英国物理学家胡克发现,金属丝或金属杆在弹性限度内的伸长与拉力成正比,这就是著名的胡克定律,这个发现为后人对材料的研究奠定了重要的基础.现有一根用新材料制成的金属杆,长为4m,横截面积为0.8cm2,设计要求它受到拉力后的伸长不超过原长的
1
1000
,由于这一拉力很大,杆又较长,直接测试有困难,因此选用同种材料制成的样品进行测试,通过测试取得数据如下:
长度/m 精英家教网 250 500 750 1000
1 0.05 0.04 0.08 0.12 0.16
2 0.05 0.08 0.16 0.24 0.32
3 0.05 0.12 0.24 0.36 0.48
1 0.10 0.02 0.04 0.06 0.08
1 0.20 0.01 0.02 0.03 0.04
(1)根据测试结果,推导出线材伸长x与材料的长度L、材料的横截面积S及拉力F的函数关系为
 

(2)在寻找上述关系的过程中,你运用了下列科学研究方法中的哪一种
 

A.理想实验法    B.提出假说法    C.控制变量法
(3)通过对样品的测试,求出新材料制成的金属细杆能承受的最大拉力约为
 

查看答案和解析>>

科目:高中物理 来源: 题型:

用金属丝制成的线材(如钢丝、钢筋)受到拉力会伸长,17世纪英国物理学家胡克发现:金属丝或金属杆在弹性限度内它的伸长长度与拉力成正比,这就是著名的胡克定律,这一发现为后人对材料的研究奠定了重要基础.现在一根用新材料制成的金属杆,长为4m,横截面积0.8cm2,设计要求它受到拉力后的伸长长度不超过原长的1/1000,由于这一拉力很大,杆又较长,直接测量有困难,但可以选用同种材料制成的样品进行测试,通过测试取得数据如下:

测试结果表明线材受拉力作用后伸长与材料的长度成____比,与材料的横截面积成_____比.

查看答案和解析>>

同步练习册答案