精英家教网 > 高中物理 > 题目详情
19.如图所示,光滑绝缘水平桌面上固定一绝缘挡板P,质量分别为mA和mB的小物块A和B(可视为质点)分别带有+QA和+QB,的电荷量,两物块由绝缘的轻弹簧相连,一不可伸长的轻绳跨过定滑轮,一端与物块B连接,另一端连接轻质小钩.整个装置处于正交的场强大小为E、方向水平向左的匀强电场和磁感应强度大小为B、方向水平向里的匀强磁场中.物块A、B开始时均静止,已知弹簧的劲度系数为K,不计一切摩擦及AB间的库仑力,物块A、B所带的电荷量不变,B不会碰到滑轮,物块A、B均不离开水平桌面.若在小钩上挂一质量为M的物块C并由静止释放,可使物块A对挡板P的压力为零,但不会离开P,则:
(1)求物块C下落的最大距离;
(2)求小物块C从开始下落到最低点的过程中,小物块B的电势能的变化量,以及弹簧的弹性势能变化量:(要求说明是增大还是减少)
(3)若C的质量改为2M,求小物块A刚离开挡板P时小物块B的速度大小,以及此时小物块B对水平桌面的压力.

分析 (1)要正确求出C下落的最大距离,关键是正确分析当达到最大距离时系统中各个物体的状态,开始由于A受水平向左的电场力以及弹簧的弹力作用,A被挤压在挡板P上,当B向右运动弹簧恢复原长时,A仍然与挡板之间有弹力作用,当B继续向右运动时,弹簧被拉长,当弹簧弹力大小等于A所受电场力时,A与挡板之间弹力恰好为零,此时B、C的速度也恰好为零,即C下落距离最大,注意此时A处于平衡状态,而B、C都不是平衡状态.
(2)依据电场力做功即可求出小物块B的电势能的变化量,B、C一起运动过程中,初末速度均为零,B电势能增大,C重力势能减小,依据功能关系即可求出弹簧弹性势能变化量.
(3)对系统根据功能关系有:当小物块A刚离开挡板P时,C重力势能减小量等于B电势能和弹簧弹性势能以及B、C动能变化量之和;B球在竖直方向合外力为零,因此对B球正确进行受力分析即可求出小物块对水平面的压力

解答 解:(1)开始时弹簧的形变量为x1
对物体B由平衡条件可得:kx1=QBE
设A刚离开挡板时,
弹簧的形变量为x2
对物块B由平衡条件可得:kx2=QAE
故C下降的最大距离为:h=x1+x2=$\frac{E}{k}({Q}_{A}+{Q}_{B})$
(2)物块C由静止释放下落h至最低点的过程中,
B的电势能增加量为:△E=QBEh=$\frac{{E}^{2}}{k}{Q}_{B}({Q}_{A}+{Q}_{B})$
由能量守恒定律可知:
物块由静止释放至下落h至最低点的过程中,
c的重力势能减小量等于
B的电势能的增量和弹簧弹性势能的增量
即:Mgh=QBEh+△E
解得:△E=$\frac{E}{k}(Mg-{Q}_{B})$(QA+QB
故小物块C下落到最低点的过程中,小物块B的电势能的变化量为$\frac{{E}^{2}}{k}{Q}_{B}({Q}_{A}+{Q}_{B})$,弹簧的弹性势能变化量为
△E=$\frac{E}{k}(Mg-{Q}_{B})$(QA+QB
(3)当C的质量为2M时,
设A刚离开挡板时B的速度为V,
由能量守恒定律可知:2Mgh+QBEh+△E+$\frac{1}{2}(2M+mB){v}^{2}$
解得A刚离开P时B的速度为:v=$\sqrt{\frac{2MgE({Q}_{A}+{Q}_{B})}{(2M+{m}_{B})k}}$
因为物块AB均不离开水平桌面,
设物体B所受支持力为NB1,所以对物块B竖直方向受力平衡:
mBg=NB1+QBvB
由牛顿第三定律得:NB=NB1
解得:NB=mB-BQB$\sqrt{\frac{2MgE({Q}_{A}+{Q}_{B})}{(2M+{m}_{B})k}}$
答:(1)求物块C下落的最大距离为$\frac{E}{k}({Q}_{A}+{Q}_{B})$;
(2)求小物块C从开始下落到最低点的过程中,小物块B的电势能的变化量,以及弹簧的弹性势能变化量变大为:$\frac{E}{k}(Mg-{Q}_{B})$(QA+QB
(3)若C的质量改为2M,求小物块A刚离开挡板P时小物块B的速度大小:$\sqrt{\frac{2MgE({Q}_{A}+{Q}_{B})}{(2M+{m}_{B})k}}$,以及此时小物块B对水平桌面的压力mB-BQB$\sqrt{\frac{2MgE({Q}_{A}+{Q}_{B})}{(2M+{m}_{B})k}}$.

点评 本题过程繁琐,涉及功能关系多,有弹性势能、电势能、重力势能等之间的转化,全面考察了学生综合分析问题能力和对功能关系的理解及应用,有一定难度.对于这类题目在分析过程中,要化繁为简,即把复杂过程,分解为多个小过程分析,同时要正确分析受力情况,弄清系统运动状态以及功能关系

练习册系列答案
相关习题

科目:高中物理 来源: 题型:填空题

9.磁电式电表在没有接入电路(或两接线柱是空闲)时,由于微扰指针摆动很难马上停下来,而将两接线柱用导线直接相连,摆动着的指针很快停下,这种现象叫做电磁阻尼(填电磁驱动或者电磁阻尼),这是电磁学中楞次定律的体现.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

10.如图甲所示,用包有白纸的质量为m(kg)的圆柱棒代替纸带和重物,蘸有颜料的毛笔固定在电动机上并随之转动,代替打点计时器.当烧断悬挂圆柱棒的线后,圆柱棒竖直自由下落,毛笔转动就在圆柱棒表面的纸上画出记号,如图乙所示,设毛笔接触棒时不影响棒的运动.测得记号之间的距离依次为20.0mm,44.0mm,68.0mm,92.0mm,116.0mm,140.0mm,已知电动机每秒钟转20圈,由此研究圆柱棒的运动情况.根据以上内容,回答下列问题:

(1)毛笔画相邻两条线的时间间隔T=0.05s,图乙中的左端是圆柱棒的悬挂端(填“左”或“右”).
(2)根据图乙所给的数据,可知毛笔画下记号D时,圆柱棒下落的速度vD=1.60m/s;圆柱棒竖直下落的加速度a=9.60m/s2.(结果保留三位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

7.下列说法中正确的是(  )
A.做简谐运动的物体,其振动能量与振幅无关
B.全息照相的拍摄利用了光的干涉原理
C.真空中的光速在不同的惯性参考系中都是相同的,与光源和观察者的运动无关
D.医学上用激光做“光刀”来进行手术,主要是利用了激光的亮度高、能量大的特点
E.机械波和电磁波都可以在真空中传播

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

14.如图所示,一个半径为R的导电圆环与一个轴向对称的发散磁场处处正交,环上各点的磁感应强度B大小相等,方向均与环面轴线方向成θ角(环面轴线为竖直方向).若导线环上载有如图所示的恒定电流I,则下列说法正确的是(  )
A.导电圆环所受安培力方向竖直向下
B.导电圆环所受安培力方向竖直向上
C.导电圆环所受安培力的大小为2BIR
D.导电圆环所受安培力的大小为2πBIRsinθ

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

4.如图所示,一质量为m的物体在沿斜面向上的恒力F作用下,由静止从底端向上做匀加速直线运动,斜面足够长,表面光滑,倾角为θ,经一段时间恒力F做功8J,此后撤去恒力F,物体又经相同时间回到出发点,则在撤去该恒力前瞬间,该恒力的功率是(  )
A.$\frac{2}{3}g\sqrt{m}$sinθB.$\frac{4}{3}g\sqrt{m}$sinθC.$\frac{16}{3}g\sqrt{m}$sinθD.$\frac{8}{3}g\sqrt{m}$sinθ

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

11.将一定滑轮改为动滑轮使用,在不计绳重和摩擦情况下,它的机械效率(  )
A.一定提高B.一定降低C.一定不变D.无法判断

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

8.如图所示,一气垫平台上悬浮一平板BC,其质量为M,平板的一端有一质量为m的小车,小车的前缘与平板的B端相距为L,小车轮子的半径为r,小车与平板原来都处于静止状态.后来小车的马达起动,使小车的轮子每秒转动n周,设车轮与平板之间没有相对滑动,车轮开始转动时平板的B端与平台的A端正好对齐,平板与平台间的摩擦可忽略.问平板的B端在距平台A端多远处小车的前缘跌出平板的B端?

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

20.第一位将天体间存在引力与地面上物体间存在的引力统一起来的科学家是(  )
A.开普勒B.伽利略C.牛顿D.卡文迪许

查看答案和解析>>

同步练习册答案