精英家教网 > 高中物理 > 题目详情
7.如图所示,质量分别为m1、m2的两个小球A、B,带有等量异种电荷,通过绝缘轻弹簧相连接,置于绝缘光滑的水平面上,突然加一水平向右的匀强电场后,两球A、B将由静止开始运动,对两小球A、B和弹簧组成的系统而言,两球从静止到距离最大的过程中,以下说法正确的是(设整个过程中不考虑电荷间库仑力的作用,且弹簧不超过弹性限度)(  )
A.系统机械能不断增加B.系统机械能守恒
C.系统动能不断增加D.系统动能不变

分析 两小球受到的电场力做正功,系统的机械能增加;根据合力对两小球的做功情况进行分析,根据动能定理可明确系统动能的变化情况.

解答 解:
A、B、加上电场后,电场力对两球做功,根据功能关系可知,系统的机械能不守恒,由于电场力对系统做正功,故系统机械能增加,故A正确,B错误;
C、D、电场力大于弹簧弹力,小球向左向右加速,电场力小于弹簧弹力,小球向左向右减速.知当电场力和弹簧弹力相等时,系统动能最大,故CD错误.
故选:A.

点评 本题结合弹簧考查机械能守恒定律及运动学知识,要求我们在动态的变化类题目中要注意分析过程,明确能量间的转化关系.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

12.关于摩擦力,下列说法正确的是(  )
A.人走路前进时,地面给人的摩擦力阻碍人前进
B.擦黑板时,静止的黑板受到的摩擦为滑动摩擦力
C.人握竖直杆向上爬,杆给人的摩擦力向下
D.物体受到的最大静摩擦力不会超过其所受重力大小

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

18.如图所示,两根相距L1的平行粗糙金属导轨固定在水平面上,导轨上分布着n 个宽度为d、间距为2d的匀强磁场区域,磁场方向垂直水平面向上.在导轨的左端连接一个阻值为R的电阻,导轨的左端距离第一个磁场区域L2的位置放有一根质量为m,长为L1,阻值为r的金属棒,导轨电阻及金属棒与导轨间的接触电阻均不计.某时刻起,金属棒在一水平向右的已知恒力F作用下由静止开始向右运动,已知金属棒与导轨间的动摩擦因数为μ,重力加速度为g.

(1)若金属棒能够匀速通过每个匀强磁场区域,求金属棒离开第2个匀强磁场区域时的速度v2的大小;
(2)在满足第(1)小题条件时,求第n个匀强磁场区域的磁感应强度Bn的大小;
(3)现保持恒力F不变,使每个磁场区域的磁感应强度均相同,发现金属棒通过每个磁场区域时电路中的电流变化规律完全相同,求金属棒从开始运动到通过第n个磁场区域的整个过程中左端电阻R上产生的焦耳热Q.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

15.如图所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨平面下水平面间的夹角θ=37°,NQ间连接有一个R=5Ω的电阻,有一匀强磁场垂直于导轨平面,磁感强度为B0=1T.将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ平行.已知金属棒与导轨间的动摩擦因数μ=0.5,当金属棒滑行至cd处时已经达到稳定速度,cd距离NQ为s=1m.试解答以下问题:(g=10m/s2,sin37°=0.6,cos37°=0.8)
(1)当金属棒滑行至cd处时回路中的电流多大?
(2)金属棒达到的稳定速度是多大?
(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感强度逐渐减小,可使金属棒中不产生感应电流,则t=1s时磁感应强度应为多大?

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

2.如图所示,两平行金属板A、B相距d=15cm,其间分布有匀强电场,C、D为电场中的两点,CD连线和电场方向成60°角且长度l=10cm,已知电子从D点移动到C点电场力做功3.2×10-17J.求:
(1)匀强电场的电场强度的大小;
(2)A、B两点间的电势差.

查看答案和解析>>

科目:高中物理 来源: 题型:作图题

12.按照题目要求作图:

(1)如图甲所示,作出光线通过透镜的光路图(保留必要的作图痕迹);
(2)如图乙所示,请在图中画出动力F1的力臂以及作用于B点的阻力F2的示意图;
(3)如图丙所示,用笔画线代替导线将电灯和开关接到电路中.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

19.如图所示,一U 形金属导轨竖直倒置,相距为L,磁感应强度的大小为B的匀强磁场与导轨平面垂直.一阻值为R、长度为L、质量为m的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后速度减小,最终速度稳定时离磁场上边缘的距离为H.导体棒从静止开始运动到速度刚稳定的整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.下列说法正确的是(  )
A.整个运动过程中回路的最大电流为$\frac{{BL\sqrt{2gh}}}{R}$
B.整个运动过程中导体棒产生的焦耳热为mg(H+h)-$\frac{{{m^3}{g^2}{R^2}}}{{2{B^4}{L^4}}}$
C.整个运动过程中导体棒克服安培力所做的功为mgH
D.整个运动过程中回路电流的功率为${({\frac{mg}{BL}})^2}R$

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

16.如图所示,倾角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接,轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T,匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=2T,现将两质量均为m=0.4kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放,g=10m/s2
(1)求导体棒cd沿倾斜轨道下滑的最大速率及此时水平轨道对ad棒的支持力大小;
(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;
(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度B0=2T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

17.如图所示,在光滑绝缘水平面上,菱形ABCD边长为L,对角线BC长也为L,M为BC中点,O为三角形ABC的中心,现于B、C处各固定电量为+2Q的点电荷.下列说法正确的是(  )
A.A处与D处的场强相同
B.若再在A处固定电量为-Q的点电荷,则O处的场强大小为$\frac{9KQ}{{L}^{2}}$
C.若点电荷-Q从A静止释放,则经过M时速度最大
D.若点电荷+Q从B右侧靠近B的某点静止释放,沿BC向右运动过程加速度先增大后减小

查看答案和解析>>

同步练习册答案