精英家教网 > 高中物理 > 题目详情
17.如图所示,拖拉机的后轮的半径是前轮半径的两倍,A和B是前轮和后轮边缘上的点,C是后轮某半径的中点,拖拉机正常行驶时,若车轮与路面没有滑动,设A、B、C三点的线速度大小分别为vA、vB、vC,角速度大小分别为ωA、ωB、ωC,向心加速度大小分别为aA、aB、aC,则以下选项正确的是(  )
A.vA:vB:vC=1:1:2B.ωA:ωB:ωC=2:1:2C.aA:aB:aC=4:2:1D.aA:aB:aC=1:2:1

分析 传动装置,在传动过程中不打滑,则有:共轴的角速度是相同的;同一传动装置接触边缘的线速度大小是相等的.所以当角速度一定时,线速度与半径成正比;当线速度大小一定时,角速度与半径成反比.因此根据题目条件可知三点的线速度及角速度关系即可求解.

解答 解:A、A、B属于皮带传动,线速度大小相等,vA=vB=v,BC属于同轴转动,角速度相同,C是后轮某半径的中点,由v=ωr可知,vC=$\frac{v}{2}$,所以vA:vB:vC=v:v:$\frac{v}{2}$=2:2:1,故A错误;
B、B、C属于同轴转动,角速度相同,由v=ωr可知,ωBC=$\frac{v}{2r}$,ωA=$\frac{v}{r}$,所以ωA:ωB:ωC=$\frac{v}{r}$:$\frac{v}{2r}$:$\frac{v}{2r}$=2:1:1,故B错误;
CD、由a=ω2r可知aA=($\frac{v}{r}$)2×r=$\frac{{v}^{2}}{r}$,aB=($\frac{v}{2r}$)2×2r=$\frac{{v}^{2}}{2r}$,aC=($\frac{v}{2r}$)2×r=$\frac{{v}^{2}}{4r}$,所以aA:aB:aC=$\frac{{v}^{2}}{r}$:$\frac{{v}^{2}}{2r}$:$\frac{{v}^{2}}{4r}$=4:2:1,故C正确,D错误.
故选:C.

点评 解答此题的关键是明确共轴的角速度是相同的;同一传动装置接触边缘的线速度大小是相等的;灵活应用线速度、角速度与半径之间的关系.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

13.图(甲)为手机及无线充电板.图(乙)为充电原理示意图.充电板接交流电源,对充电板供电,充电板内的送电线圈可产生交变磁场,从而使手机内的受电线圈产生交变电流,再经整流电路转变成直流电后对手机电池充电.为方便研究,现将问题做如下简化:设受电线圈的匝数为n,面积为S,若在t1到t2时间内,磁场垂直于受电线圈平面向上穿过线圈,其磁感应强度由B1均匀增加到B2.下列说法正确的是(  )
A.c点的电势高于d点的电势
B.受电线圈中感应电流方向由d到c
C.c、d之间的电势差为$\frac{n({B}_{2}-{B}_{1})S}{{t}_{2}-{t}_{1}}$
D.c、d之间的电势差为$\frac{n({B}_{2}-{B}_{1})}{{t}_{2}-{t}_{1}}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

8.如图所示,两条足够长的光滑平行金属导轨(电阻不计)相距为L=0.5m,MN、PQ与水平面的夹角为α=53?,N、Q两点间接有阻值为R=0.4Ω的电阻,在导轨间存在垂直于导轨平面的匀强磁场,磁场的磁感应强度B=1T.现将一质量为m=0.5kg,有效电阻为r=0.1Ω的金属杆ab放在轨道上,且与两轨道垂直,然后由静止释放
(1)导体棒能达到的最大速度是多少?
(2)导体棒由静止开始沿导轨下滑到刚好达到最大速度的过程中,电阻R上产生的焦耳热量等于3.2J,则这个过程中导体棒ab的位移?(g=10m/s2,sin53°=0.8)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

5.下列说法中正确的是(  )
A.牛顿发现了万有引力定律并用扭秤实验巧妙地测出了引力常量G
B.做曲线运动的物体,速度和加速度方向均时刻改变
C.同步卫星一定位于赤道正上方的某一轨道,其离地高度可以任意升降
D.不在同一直线上的匀速直线运动和匀变速直线运动的合运动一定是曲线运动

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

12.如右图甲所示,一辆遥控小车静止在水平面上,现用遥控器启动小车,使它从静止开始运动,小车运动的速度与时间关系的v-t图象如图乙所示.已知小车的质量m=2kg,小车与水平面间的动摩擦因数u=0.2,重力加速度,g取10m/s2则下列说法中正确的是(  )
A.小车位移x=1m时的速度大小为2m/s
B.小车在前2s时间内的牵引力大小为6N
C.小车在后2s时间内的牵引力大小为5N
D.小车在后2s内的位移大小为5m

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

2.如图是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高.用1、2、3、4、5分别标记5个小钢球.当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示.关于此实验,下列说法中正确的是(  )
A.上述实验过程中,5个小球组成的系统机械能守恒,动量不守恒
B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒
C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度
D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

9.小张同学设计了如图甲所示的电路来测量电源电动势E及电阻R1和R2的阻值.实验器材有:
待测电源E(不计内阻)
待测电阻Rl(小于10Ω)
待测电阻R2(小于10Ω)
电压表V(量程为3V,内阻约三、四千欧姆)
电阻箱R(0-99.99Ω)
单刀单掷开关Sl,单刀双掷开关S2,导线若干.
(1)先测电阻R1的阻值
A.闭合Sl,将S2切换到a,调节电阻箱,读出其示数R0和对应的电压表示数U1
B.保持电阻箱示数不变,将S2切换到b,读出电压表的示数U2
C.则电阳R1的表达式为R1=$\frac{{U}_{1}-{U}_{2}}{{U}_{1}}R$(用R0、U1、U2表示).
(2)小张已经测得电阻Rl=3.2Ω,继续测电源电动势E和电阻R2的阻值,其做法是:闭合Sl,将S2切换到a,多次调节电阻箱,读出多组电阻箱示数R和对应的电压表示数U,由测得的数据,绘出了如图乙所示的$\frac{1}{U}$-$\frac{1}{R}$图线,则电源电动势E=2.0V,电阻R2=0.8Ω
(3)另一位同学小李也利用上述电路测电源电动势E和电阻R2的阻值,其做法是:闭合Sl,将S2切换到b,多次调节电阻箱,读出多组电阻箱示数R和对应的电压表示数U,由测得的数据,绘出了相应的$\frac{1}{U}$-$\frac{1}{R}$图线,利用图线求出E和R2,这种做法与小张同学的做法相比较,由于小李的方法中电压表测得的数据范围较小(填“较大”、“较小”或“相同”),所以小张同学的做法更恰当些.
(4)扩展研究:若R1是个阻值约为5000~6000Ω的电阻,在其他器材参数不变的情况下,仍用(1)中的方法,还能不能较精确地测出R1的阻值?不能(选填“能”或“不能”),理由是电阻箱量程太小,导致s2接a时电压表基本无法读数.

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

6.某实验下组利用图甲所示的电路测定某电池的电动势和内阻,实验室可提供的器材如下:
A.待测电池(电动势约3V,内阻约10Ω,运行通过的最大电流为60mA)
B.电阻箱R(阻值范围0~9999Ω)
C.保护电阻R0(50Ω,1.0W)
D.保护电阻R0(500Ω,2.0W)
E.电压表V,满足实验要求
F.开关,导线若干
(1)保护电路R0应选用C.(填器材前的字母).
(2)正确连接电路并闭合开关后,调整电阻箱的阻值,记录阻值R和相应的电压表示数U,得到多组数据,然后作出有关物理量的关系如图如图乙所示,若纵轴表示的物理量是$\frac{1}{U}$,则横轴表示的物理量是$\frac{1}{{R+R}_{0}}$(填“$\frac{1}{R}$”或$\frac{1}{{R+R}_{0}}$).
(3)若图乙中图线的斜率为k,图线在纵轴上的截距为b,则电源的电动势E=$\frac{1}{b}$,内阻r=$\frac{k}{b}$.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

7.如图,两水平面(虚线)之间的距离为H,其间的区域存在方向水平向右的匀强电场.自该区域上方的A点将质量为m、电荷量分别为q和-q(q>0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出.小球在重力作用下进入电场区域,并从该区域的下边界离开.已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N刚离开电场时的动能的1.5倍.不计空气阻力,重力加速度大小为g.求
(1)M与N在电场中沿水平方向的位移之比;
(2)A点距电场上边界的高度;
(3)该电场的电场强度大小.

查看答案和解析>>

同步练习册答案