A. | 双星中每个天体的质量 | B. | 双星系统的总质量 | ||
C. | 双星中每个天体的轨道半径 | D. | 双星系统的旋转角速度 |
分析 双星系统靠相互间的万有引力提供向心力,结合牛顿第二定律求出双星总质量与双星距离和周期的关系式,从而分析判断.结合周期求出双星系统旋转的角速
解答 解:AB、根据$G\frac{{m}_{1}^{\;}{m}_{2}^{\;}}{{L}_{\;}^{2}}={m}_{1}^{\;}\frac{4{π}_{\;}^{2}}{{T}_{\;}^{2}}{r}_{1}^{\;}={m}_{2}^{\;}\frac{4{π}_{\;}^{2}}{{T}_{\;}^{2}}{r}_{2}^{\;}$①
得,又$L={r}_{1}^{\;}+{r}_{2}^{\;}$②
联立解得:$L=\root{3}{\frac{G{T}_{\;}^{2}({m}_{1}^{\;}+{m}_{2}^{\;})}{4{π}_{\;}^{2}}}$③
因为L和T已知,可以求出双星系统的总质量,但无法求出每个天体的质量,故A错误,B正确;
C、由①得${m}_{1}^{\;}{r}_{1}^{\;}={m}_{2}^{\;}{r}_{2}^{\;}$且${r}_{1}^{\;}+{r}_{2}^{\;}=L$,因为无法求出每个天体的质量,故不可以求出双星中每个天体的轨道半径,故C正确;
D、根据$ω=\frac{2π}{T}$,所以可以求出双星系统的旋转角速度,故D正确;
故选:BD.
点评 解决本题的关键知道双星系统的特点,即周期相等、向心力大小相等,结合牛顿第二定律分析求解
科目:高中物理 来源: 题型:计算题
查看答案和解析>>
科目:高中物理 来源: 题型:解答题
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | 有的光是粒子,有的光是波 | |
B. | 大量光子的行为表现为粒子性 | |
C. | 光电效应揭示了光具有粒子性,康普顿效应揭示了光具有波动性 | |
D. | 光的波长越长,其波动性越明显;波长越短,其粒子性越显著 |
查看答案和解析>>
科目:高中物理 来源: 题型:计算题
查看答案和解析>>
科目:高中物理 来源: 题型:计算题
查看答案和解析>>
科目:高中物理 来源: 题型:填空题
查看答案和解析>>
科目:高中物理 来源: 题型:实验题
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | $\frac{△v}{△t}$表示速度的变化率,是标量 | |
B. | 加速度a与△v成正比,与△t成反比 | |
C. | 利用a=$\frac{△v}{△t}$求得的加速度是△t时间内的平均加速度 | |
D. | △v表示在△t时间内物体速度的变化量,它的方向可能与加速度a的方向相反 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com