精英家教网 > 高中物理 > 题目详情
精英家教网劳伦斯和利文斯设计的回旋加速器工作原理如图所示.置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.若A处粒子源产生的质子质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是(  )
A、质子被加速后的最大速度为2πRf
B、质子离开回旋加速器时的最大动能与加速电压U成正比
C、质子离开回旋加速器时的最大动能与金属盒半径成正比
D、质子第1次和第2次经过D形盒间狭缝后轨道半径之比为1:
2
分析:回旋加速器运用电场加速磁场偏转来加速粒子,根据洛伦兹力提供向心力可以求出粒子的最大速度,从而求出最大动能.在加速粒子的过程中,电场的变化周期与粒子在磁场中运动的周期相等.
解答:解:A、质子出回旋加速器的速度最大,此时的半径为R,则v=
2πR
T
=2πRf.所以最大速度不超过2πfR.故A正确.
B、根据qvB=m
v2
R
,知v=
qBR
m
,则最大动能EKm=
1
2
mv2=
q2B2R2
2m
.与加速的电压无关.故B错误.
C、根据qvB=m
v2
R
,知v=
qBR
m
,则最大动能EKm=
1
2
mv2=
q2B2R2
2m
.与半径的平方成正比.故C错误.
D、粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据v=
2ax
知,质子第1次和第2次经过D形盒狭缝的速度比为1:
2

根据r=
mv
qB
,则半径比为1:
2
.故D正确.
故选:AD.
点评:解决本题的关键知道回旋加速器电场和磁场的作用,知道最大动能与什么因素有关,以及知道粒子在磁场中运动的周期与电场的变化的周期相等.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:阅读理解

(2012?昌平区二模)1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图(甲)所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,初速度为0,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t和粒子获得的最大动能Ekm

(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合.例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量.n个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图(乙)所示(图中只画出了六个圆筒,作为示意).各筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.

查看答案和解析>>

科目:高中物理 来源:2011-2012学年湖北省黄石二中高三(下)适应性考试物理试卷(5月份)(解析版) 题型:解答题

1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图(甲)所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,初速度为0,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t和粒子获得的最大动能Ekm

(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合.例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量.n个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图(乙)所示(图中只画出了六个圆筒,作为示意).各筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.

查看答案和解析>>

科目:高中物理 来源:2012年北京市昌平区高考物理二模试卷(解析版) 题型:解答题

1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图(甲)所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,初速度为0,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t和粒子获得的最大动能Ekm

(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合.例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量.n个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图(乙)所示(图中只画出了六个圆筒,作为示意).各筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.

查看答案和解析>>

科目:高中物理 来源: 题型:

劳伦斯和利文斯设计的回旋加速器工作原理如图所示,置于高真空中的D形金属半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略,磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.若A处粒子源产生的质子质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响,则下列说法正确的是

A.质子被加速后的最大速度不可能超过2πRf

B.质子离开回旋加速器时的最大动能与加速电压U成正比

C.质子离开回旋加速器时的最大动能与交流电频率f成正比

D.质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为1∶

查看答案和解析>>

同步练习册答案