精英家教网 > 高中物理 > 题目详情
20.如图甲所示,两个平行正对的水平金属板XX′极板长L=0.2$\sqrt{3}$m,板间距离d=0.2m,在金属板右端竖直边界MN的右侧有一区域足够大的匀强磁场,磁感应强度B=5×10-3T,方向垂直纸面向里.现将X′极板接地,X极板上电势φ随时间变化规律如图乙所示.现有带正电的粒子流以v0=105m/s的速度沿水平中线OO′连续射入电场中,粒子的比荷q/m=108C/kg,重力可忽略不计,在每个粒子通过电场的极短时间内,电场可视为匀强电场(设两板外无电场).求:

(1)带电粒子射出电场时的最大速率;
(2)粒子在磁场中运动的最长时间和最短时间之比;
(3)分别从O′点和距O′点下方$\frac{d}{4}$=0.05m处射入磁场的两个粒子,在MN上射出磁场时两出射点之间的距离.

分析 (1)粒子在电场中做类平抛运动,应用类平抛运动规律与动能定理可以求出带电粒子射出电场时的最大速率;
(2)粒子在磁场中做匀速圆周运动,应用牛顿第二定律求出粒子轨道半径,结合带电粒子在电场中向上偏转的情况与向下偏转的情况,画出运动的轨迹,由几何关系以及:$\frac{t}{T}=\frac{θ}{2π}$即可得出时间关系;
(3)分别从O′点和距O′点下方$\frac{d}{4}$=0.05m处射入磁场的两个粒子,由带电粒子在电场中运动的特点,求出粒子的偏转角,然后画出运动的轨迹,由几何关系即可得出结果.

解答 解:(1)带电粒子在偏转电场中做类平抛运动:
水平:$t=\frac{L}{v_0}=2\sqrt{3}×{10^{-6}}$s   
竖直:$y=\frac{1}{2}a{t^2}=\frac{d}{2}$,其中$a=\frac{{q{U_1}}}{dm}$,
所以${U_1}=\frac{adm}{q}=\frac{100}{3}$V  
当U>$\frac{100}{3}$V时进入电场中的粒子将打到极板上,即在电压等于$\frac{100}{3}$V时刻进入的粒子具有最大速度
所以由动能定理得:$q\frac{U_1}{2}=\frac{1}{2}mv_t^2-\frac{1}{2}mv_0^2$,
得:vt=$\frac{{2\sqrt{3}}}{3}×{10^5}$m/s,
(2)计算可得,粒子射入磁场时的速度与水平方向的夹角为30°,从下极板边缘射出的粒子轨迹如图中a所示,磁场中轨迹所对的圆心角为240°,时间最长

从上极板边缘射出的粒子轨迹如图中b所示,磁场中轨迹所对应的圆心角为120°,时间最短 
因为两粒子的周期$T=\frac{2πm}{Bq}$相同,所以粒子在磁场中运动的最长时间和最短时间之比为2:1  
(3)如下图,从O′点射入磁场的粒子速度为v0,它在磁场中的出射点与入射点间距为d1=2R1
得:${R_1}=\frac{{m{v_1}}}{Bq}$,
所以:${d_1}=\frac{{2m{v_0}}}{Bq}$
从距O′点下方$\frac{d}{4}$=0.05m处射入磁场的粒子速度与水平方向夹角φ,则它的速度为${v_2}=\frac{v_0}{cosϕ}$,它在磁场中的出射点与入射点间距为d2=2R2cosϕ,
由于${R_2}=\frac{{m{v_2}}}{Bq}$,所以${d_2}=\frac{{2m{v_0}}}{Bq}$
所以两个粒子向上偏移的距离相等!
所以:两粒子射出磁场的出射点间距仍为进入磁场时的间距,即$\frac{d}{4}=0.05$m 
答:(1)带电粒子射出电场时的最大速率是$\frac{{2\sqrt{3}}}{3}×{10^5}$m/s;
(2)粒子在磁场中运动的最长时间和最短时间之比是2:1;
(3)分别从O′点和距O′点下方$\frac{d}{4}$=0.05m处射入磁场的两个粒子,在MN上射出磁场时两出射点之间的距离是0.05m.

点评 本题以带电粒子在场中运动问题为命题背景考查学生的推理、分析和应用数学处理物理问题的能力.分析清楚粒子运动过程是正确解题的前提与关键,应用动能定理、类平抛运动规律、牛顿第二定律即可正确解题.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

10.根据热力学定律和分子动理论,下列说法正确的是 (  )
A.为了增加物体的内能,必须对物体做功或向它传递热量
B.不可能使热量由低温物体传递到高温物体
C.可以从单一热源吸收热量,使之完全变为功
D.一定质量的理想气体,在等压膨胀过程中,气体分子的平均动能减小
E.功转化为热的宏观过程是不可逆的过程

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

11.某些物质在低温下会发生“零电阻”现象,这被称为物质的超导电性,具有超导电性的材料称为超导体.根据超导体的“零电阻”特性,人们猜测:磁场中的超导体,其内部的磁通量必须保持不变,否则会产生涡旋电场,导致超导体内的自由电荷在电场力作用下不断加速而使得电流越来越大不可控制.但是,实验结果与人们的猜测是不同的:磁场中的超导体能将磁场完全排斥在超导体外,即内部没有磁通量,超导体的这种特性叫做“完全抗磁性”(迈斯纳效应).现在有两个实验方案:(甲)如图所示,先将一个金属球放入匀强磁场中,等稳定后再降温使其成为超导球并保持低温环境,然后撤去该磁场;(乙)先将该金属球降低温度直至成为超导球,保持低温环境加上匀强磁场,待球稳定后再将磁场撤去.根据以上信息,试判断上述两组实验中球内磁场的最终情况是下图中的哪一组?(  )
A.B.C.D.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

8.一滑块经水平轨道AB,进入竖直平面内的四分之一圆弧轨道BC,已知滑块的质量m=0.6kg,在A点的速度vA=8m/s,AB长x=5m,滑块与水平轨道间的动摩擦因数μ=0.15,圆弧轨道的半径R=2m,滑块离开C点后竖直上升h=0.2m,取g=10m/s2.求:
(1)滑块滑到B点前的加速度和滑块恰好滑过B点时的加速度.
(2)滑块在圆弧轨道BC段克服摩擦力所做的功.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

15.如图所示,两根轻绳一端系于结点O,另一端分别系于固定圆环上的A、B两点,O为圆心.O点下面悬挂一物体M,绳OA水平,拉力大小为F1,绳OB与绳OA成α=120°,拉力大小为F2.将两绳同时缓慢顺时针转过75°,并保持两绳之间的夹角α始终不变,物体始终保持静止状态.则在旋转过程中,下列说法正确的是(  )
A.F1逐渐增大B.F1先增大后减小C.F2逐渐减小D.F2先减小后增大

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

5.世界上海拔最高、线路最长的青藏铁路全线通车,青藏铁路安装的一种电磁装置可以向控制中心传输信号,以确定火车的位置和运动状态,其原理是将能产生匀强磁场的磁铁安装在火车首节车厢下面,如图甲所示(俯视图),当它经过安放在两铁轨间的线圈时,线圈便产生一个电信号传输给控制中心.线圈边长分别为l1和l2,匝数为n,线圈和传输线的电阻忽略不计.若火车通过线圈时,控制中心接收到线圈两端的电压信号u与时间t的关系如图乙所示(ab、cd均为直线),t1、t2、t3、t4是运动过程的四个时刻,则火车(  )
A.在t1~t2时间内做匀加速直线运动
B.在t3~t4时间内做匀减速直线运动
C.在t1~t2时间内加速度大小为$\frac{{{u_2}-{u_1}}}{{nB{l_1}({t_2}-{t_1})}}$
D.在t3~t4时间内平均速度的大小为$\frac{{{u_3}+{u_4}}}{{2nB{l_1}}}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

12.一列质量为3×105kg的列车,在额定功率下,沿平直的轨道由静止开始出发,在运动的过程中受到的阻力大小恒定t、经过300s后速度达到最大行驶速度108km/h列车以最大速度匀速行驶一段时间后,司机发现前方4.5km处的轨道旁的山体塌方,便立即紧急刹车,这时所附加的制动力为1×104N.结果列车正好到达轨道毁坏处停下求:
(1)刹车时列车的加速度的大小
(2)列车在正常行驶过程中所受到的阻力的大小.
(3)列车的额定功率.
(4)列车从起动到速度最大时行驶的距离.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

9.为模拟空气净化过程,有人设计了如图所示的含灰尘空气的密闭玻璃圆桶,圆桶的高和直径相等.第一种除尘方式是:在圆桶顶面和底面间加上电压U,沿圆桶的轴线方向形成一个匀强电场,尘粒的运动方向如图甲所示;第二种除尘方式是:在圆桶轴线处放一直导线,在导线与桶壁间加上的电压也等于U,形成沿半径方向的辐向电场,尘粒的运动方向如图乙所示.已知空气阻力与尘粒运动的速度成正比,即f=kv(k为一定值),假设每个尘粒的质量和带电荷量均相同,重力可忽略不计,则在这两种方式中(  )
A.尘粒最终一定都做匀速运动
B.尘粒受到的电场力大小相等
C.电场对单个尘粒做功的最大值相等
D.第一种方式除尘的速度比第二种方式除尘的速度快

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

10.如图所示,两根足够长的光滑金属导轨竖直放置,间距为L,底端接阻值为R的电阻.将质量为m的金属棒悬挂在一个上端固定的绝缘轻弹簧下端,金属棒和导轨接触良好,除电阻R外其余电阻不计,导轨所在平面与一匀强磁场垂直,静止时金属棒位于A处,此时弹簧的伸长量为△l.现将金属棒从弹簧原长位置由静止释放,则(  )
A.轻弹簧的劲度系数为$\frac{mg}{△l}$
B.电阻R中电流最大时,金属棒在A处下方的某个位置
C.金属棒在最低处时弹簧的拉力一定小于2mg
D.从释放到金属棒最后静止的过程中,电阻R上产生的热量为mg△l

查看答案和解析>>

同步练习册答案