精英家教网 > 高中物理 > 题目详情
6.小明同学利用如图所示的装置来验证机械能守恒定律.A为装有挡光片的钩码,总质量为M,挡光片的挡光宽度为b,轻绳一端与A相连,另一端跨过光滑轻质定滑轮与质量为m(m<M)的重物B相连.他的做法是:先用力拉住B,保持A、B静止,测出A的挡光片上端到光电门的距离h;然后由静止释放B,A下落过程中经过光电门,光电门可测出挡光片的挡光时间t,算出挡光片经过光电门的平均速度,将其视为A下落h(h>>b)时的速度,重力加速度为g.
(1)在A从静止开始下落h的过程中,验证以A、B、地球所组成的系统机械能守恒定律的表达式为$(M-m)gh=\frac{1}{2}(M+m)(\frac{b}{t})^{2}$(用题目所给物理量的符号表示);
(2)由于光电门所测的平均速度与物体A下落h时的瞬时速度间存在一个差值△v,因而系统减少的重力势能
大于系统增加的动能(选填“大于”或“小于”);
(3)为减小上述△v对结果的影响,小明同学想到了以下一些做法,其中可行的是D
A.保持A下落的初始位置不变,测出多组t,算出多个平均速度然后取平均值
B.减小挡光片上端到光电门的距离h
C.增大挡光片的挡光宽度b
D.适当减小挡光片的挡光宽度b
(4)若采用本装置测量当地的重力加速度g,则测量值小于真实值(选填“大于”、“等于”或“小于”).

分析 (1)根据极短时间内的平均速度等于瞬时速度得出物块经过光电门的瞬时速度,从而得出系统动能的增加量,根据下降的高度得出系统重力势能的减小量.
(2)抓住光电门测出的瞬时速度是挡光片通过光电门过程中中间时刻的瞬时速度分析系统减小的重力势能和系统增加动能的关系.
(3)根据实验的原理以及误差分析得出减小误差的可行方法.
(4)根据阻力的影响分析重力加速度的测量值和真实值的关系.

解答 解:(1)系统重力势能的减小量为:△Ep=(M-m)gh,
物块经过光电门的瞬时速度为:$v=\frac{b}{t}$,
则系统动能的增加量为:$△{E}_{k}=\frac{1}{2}(M+m){v}^{2}$=$\frac{1}{2}(M+m)(\frac{b}{t})^{2}$.
则机械能守恒的表达式为:$(M-m)gh=\frac{1}{2}(M+m)(\frac{b}{t})^{2}$.
(2)光电门测出的平均速度是挡光片通过光电门过程中中间时刻的瞬时速度,此时下降的高度小于h,则系统减少的重力势能大于系统增加的动能.
(3)为减小上述△v对结果的影响,可以减小挡光片的宽度,使得平均速度更接近瞬时速度,故D正确.
(4)由于阻力的影响,重力加速度的测量值小于真实值.
故答案为:(1)$(M-m)gh=\frac{1}{2}(M+m)(\frac{b}{t})^{2}$;(2)大于;(3)D;(4)小于.

点评 解决本题的关键知道实验的原理以及注意事项,抓住系统重力势能的减小量和动能的增加量是否相等进行验证,知道实验误差的来源.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:实验题

19.在“描绘小灯泡的伏安特性曲线”的实验中,需测量一个标有“3V,1.5W”灯泡两端的电压和通过灯泡的电流,现有如下器材:
直流电源(电动势3.0V,内阻不计)
电流表A1(量程3A,内阻约0.1Ω)
电流表A2(量程600mA,内阻约5Ω)
电压表V1(量程3V,内阻约3kΩ)
电压表V2(量程15V,内阻约200kΩ)
滑动变阻器R1(阻值0~10Ω,额定电流1A)
滑动变阻器R2(阻值0~1kΩ,额定电流300mA)
(1)在该实验中,电流表应选择A2(填“A1”或“A2”),电压表应选择V1(填“V1”或“V2”),滑动变阻器应选择R1(填“R1”或“R2”)
(2)某同学用导线a、b、c、d、e、f、g和g连接成如图甲所示的电路,若用该电路测得灯泡的工作电压U和电流I,根据R=$\frac{U}{I}$计算此时灯泡的电阻,则灯泡电阻的测量值小于真实值(填“大于”、“等于”或“小于”).

(3)该同学连接电路后检查所有元件都完好,电流表和电压表已调零,经检查各部分接触良好,但闭合开关后,反复调节滑动变阻器,小灯泡的亮度发生变化,但电压表和电流表示数不能调零,则断路的导线为h(填导线代号)
(4)图乙是在实验中根据测出的数据,在方格纸上作出该小灯泡的伏安特性曲线,若将两个该种灯泡和一个6.0Ω的定值电阻一起串联与题中的电源组成闭合回路,请估算每个小灯泡的实际功率P=0.11W(保留两位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

17.如图1,一辆塑料玩具小汽车,底部安装了一个10匝的导电线圈,线圈和小车总质量m=0.5kg,线圈宽度l1=0.1m,长度与车身长度相同l2=0.25m,总电阻R=1.0Ω;某次试验中,小车在F=2.0N的水平向右恒定驱动力作用下由静止开始在水平路面上运动,当小车前端进入右边的匀强磁场区域ABCD时,恰好达到匀速直线运动状态,磁场方向竖直向下,磁感应强度B随时间t的变化情况如B-t图象(图2)所示,如图3,以小车进入磁场的时候做为计时的起点;磁场宽度d=1.0m,磁场宽度AB大于小车宽度,整个过程中小车所受阻力为其总重力的0.2倍;求:

(1)小车前端碰到磁场边界AB时线圈中的电流大小及小车的速度;
(2)从静止开始到小车前端碰到磁场边界CD的整个过程中,通过线圈中的电荷量;
(3)从静止开始到小车前端碰到磁场边界CD的整个过程中,线圈中产生的焦耳热.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

14.1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中的运动特点,解决了粒子的加速问题.现在回旋加速器被广泛应用于科学研究和医学设备中.某型号的回旋加速器的工作原理如图甲所示,图乙为俯视图.回旋加速器的核心部分为两个D形盒,分别为D1、D2.D形盒装在真空容器里,整个装置放在巨大的电磁铁两极之间的强大磁场中,磁场可以认为是匀强磁场,且与D形盒底面垂直.两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.D形盒的半径为R,磁场的磁感应强度为B.设质子从粒子源A处进入加速电场的初速度不计.质子质量为m、电荷量为+q.加速器接入一定频率的高频交变电源,加速电压为U.加速过程中不考虑相对论效应和重力作用.求:

(1)质子第一次经过狭缝被加速后进入D2盒时的速度大小v1和进入D2盒后运动的轨道半径r1
(2)质子从静止开始加速到出口处所需的时间t;
(3)若两D形盒狭缝之间距离为d,d<<R,计算说明质子在电场中运动的时间与在磁场中运动时间相比可以忽略不计的原因.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

1.如图所示,a、b是匀强电场中相距0.4m的两点,a、b间的电势差为4.0V,则匀强电场的场强大小为10V/m,把一正电荷从a点移到b点,该电荷的电势能将变小(填“变大”“变小”或“不变”

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

11.某同学用如图甲所示的装置验证牛顿第二定律.

该同学将滑块从距离光电门x远处由静止释放,遮光条通过光电门时,光电门记录的时间为△t;测得气垫导轨长度为L1垫起一端距离水平桌面的高度为h.用游标卡尺测量遮光条的宽度如图乙所示,则遮光条的宽度d=4.4mm;若重力加速度为g,用相关物理量的字母表示,则滑块下滑过程中加速度的理论值可表示为a=g$\frac{h}{{L}_{1}}$,加速度的测量值可表示为a=$\frac{{d}^{2}}{2x(△t)^{2}}$.

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

18.(1)某实验小组在做“探究单摆周期与摆长的关系”的实验中,先用游标卡尺测摆球直径,结果如图甲所示,则摆球的直径为0.97cm.该小组同学通过多次实验拍以摆长L为横坐标,T2为纵坐标,作出T2-L图线,若该小组同学计算时误将小球直径与摆线长之和当作摆长L,则所画图线应为图乙中的A(填“A”或“B”).
(2)在“测定玻璃的折射率”的实验中,在白纸上放好玻璃砖,aa′和bb′分别是玻璃砖与空气的两界面,如图丙所示,在玻璃砖的一侧插上两枚大头针P1和P2,用“+”表示大头针的位置,然后在另一侧透过玻璃砖观察并依次插上P3和P4,在插P3和P4时,应使C.(填选项前的字母)
A.P3只挡住P1的像
B.P4只挡住P2的像
C.P3同时挡住P1、P2的像.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

15.金属杆在相距1m的水平轨道上与轨道垂直放置,金属杆上通以I=4A的恒定电流,如图所示,匀强磁场B=0.1T,方向垂直轨道平面,则:
①判断金属杆所受安培力的方向;
②求金属杆受安培力的大小.

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

16.某物理兴趣小组利用如图甲所示的装置进行验证动量守恒定律的实验.在足够大的水平平台上的A点放置一个光电门,水平平台上A点右侧摩擦很小,可忽略不计,左侧为粗糙水平面,当地重力加速度大小为g.采用的实验步骤如下:
A.在小滑块?上固定一个宽度为d的窄挡光片;
B.用天平分别测出小滑块(含挡光片)和小球b的质量m、mb
C.在?和b间用细线连接,中间夹一被压缩了的轻短弹簧,静止放置在平台上;
D.细线烧断后,a、b瞬间被弹开,向相反方向运动;
E.记录滑块?通过光电门时挡光片的遮光时间t;
F.小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距水平地面的高度h及平台边缘铅垂线与B点之间的水平距离sb
G.改变弹簧压缩量,进行多次测量.

(1)用螺旋测微器测量遮光条的宽度,如图乙所示,则遮光条的宽度为2.550mm.
(2)该实验要验证“动量守恒定律”,则只需验证两物体a、b弹开后的动量大小相等,即ma$\frac{d}{t}$=mbsb$\sqrt{\frac{g}{2h}}$.(用上述实验所涉及物理量的字母表示)

查看答案和解析>>

同步练习册答案