18£®ÈçͼËùʾΪ»ØÐý¼ÓËÙÆ÷µÄʾÒâͼ£®ËüÓÉÁ½¸öÂÁÖÆDÐͽðÊô±âºÐ×é³É£¬Á½¸öDÐκÐÕýÖм俪ÓÐÒ»ÌõÏÁ·ì£»Á½¸öDÐͺд¦ÔÚÔÈÇ¿´Å³¡Öв¢½ÓÔÚ¸ßƵ½»±äµçÔ´ÉÏ£®ÔÚD1ºÐÖÐÐÄA´¦ÓÐÀë×ÓÔ´£¬Ëü²úÉú²¢·¢³öµÄÕýÀë×Ó£¬¾­ÏÁ·ìµçѹ¼ÓËٺ󣬽øÈëD2ºÐÖУ®Ôڴų¡Á¦µÄ×÷ÓÃÏÂÔ˶¯°ë¸öÔ²Öܺ󣬴¹Ö±Í¨¹ýÏÁ·ì£¬ÔÙ¾­ÏÁ·ìµçѹ¼ÓËÙ£»Îª±£Ö¤Á£×Óÿ´Î¾­¹ýÏÁ·ì¶¼±»¼ÓËÙ£¬É跨ʹ½»±äµçѹµÄÖÜÆÚÓëÁ£×ÓÔÚÏÁ·ì¼°´Å³¡ÖÐÔ˶¯µÄÖÜÆÚÒ»Ö£®Èç´ËÖܶø¸´Ê¼£¬ËÙ¶ÈÔ½À´Ô½´ó£¬Ô˶¯°ë¾¶Ò²Ô½À´Ô½´ó£¬×îºóµ½´ïDÐͺеıßÔµ£¬ÒÔ×î´óËٶȱ»µ¼³ö£®ÒÑÖªÕýÀë×ÓÊǦÁÁ£×Ó£¬ÆäµçºÉÁ¿Îªq£¬ÖÊÁ¿Îªm£¬¼ÓËÙʱµç¼«¼äµçѹ´óСºãΪU£¬´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪB£¬DÐͺеİ뾶ΪR£¬ÉèÏÁ·ìºÜÕ­£¬Á£×Óͨ¹ýÏÁ·ìµÄʱ¼ä¿ÉÒÔºöÂÔ²»¼Æ£®ÉèÕýÀë×Ó´ÓÀë×ÓÔ´·¢³öʱµÄ³õËÙ¶ÈΪÁ㣮£¨²»¼ÆÁ£×ÓÖØÁ¦£©Çó£º
£¨1£©¦ÁÁ£×ÓÔÚµÚn´Î¼ÓËÙºó»ñµÃËÙÂÊ£®
£¨2£©¦ÁÁ£×ÓÔÚµÚn´Î¼ÓËÙºóÓëµÚn+1´Î¼ÓËÙºóλÖÃÖ®¼äµÄ¾àÀë¡÷x£®
£¨3£©ÈôʹÓô˻ØÐý¼ÓËÙÆ÷¼ÓËÙ뮺ˣ¬ÒªÏëʹ뮺˻ñµÃÓë¦ÁÁ£×ÓÏàͬµÄ¶¯ÄÜ£¬ÇëÄãͨ¹ý·ÖÎö£¬Ìá³öÒ»¸ö¼òµ¥¿ÉÐеİ취£®

·ÖÎö £¨1£©¸ù¾ÝnqU=$\frac{1}{2}m{v}_{n}^{2}$£¬¼´¿ÉÇó½â¼ÓËÙºó»ñµÃËÙÂÊ£®
£¨2£©»ØÐý¼ÓËÙÆ÷ÊÇÀûÓõ糡¼ÓËٺʹų¡Æ«×ªÀ´¼ÓËÙÁ£×Ó£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó³ön´Î¼ÓËÙºóµÄËٶȣ¬Çó³ö¹ìµÀ°ë¾¶£¬×¥×¡¹æÂÉ£¬Çó³ö¡÷x£®
£¨3£©»ØÐý¼ÓËÙÆ÷¼ÓËÙÁ£×Óʱ£¬Á£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆںͽ»Á÷µç±ä»¯µÄÖÜÆÚÏàͬ£®ÒÑ֪뮺ËÓë¦ÁÁ£×ÓµÄÖÊÁ¿±ÈºÍµçºÉ±È£¬¸ù¾Ý×î´ó¶¯ÄÜÏàµÈ£¬µÃ³ö´Å¸ÐӦǿ¶ÈµÄ¹Øϵ£¬ÒÔ¼°¸ù¾ÝÖÜÆÚ¹«Ê½£¬µÃ³ö½»Á÷µçµÄÖÜÆڱ仯£®

½â´ð ½â£º£¨1£©¦ÁÁ£×ÓÔڵ糡Öб»¼ÓËÙ£¬¸ù¾Ý¶¯Äܶ¨Àí£¬Éè´ËʱµÄËÙ¶ÈΪvn£¬
ÔòÓУºnqU=$\frac{1}{2}m{v}_{n}^{2}$£¬
½âµÃ£ºvn=$\sqrt{\frac{2nqU}{m}}$
£¨2£©¦ÁÁ£×Ó¾­µç³¡µÚ1´Î¼ÓËÙºó£¬ÒÔËÙ¶Èv1½øÈëD2ºÐ£¬Éè¹ìµÀ°ë¾¶Îªr1
Ôò  r1=$\frac{m{v}^{2}}{qB}$=$\frac{1}{B}\sqrt{\frac{2mU}{q}}$
¦ÁÁ£×Ó¾­µÚ2´Îµç³¡¼ÓËÙºó£¬ÒÔËÙ¶Èv2½øÈëD1ºÐ£¬Éè¹ìµÀ°ë¾¶Îªr2
Ôò r2=$\frac{m{v}^{2}}{qB}$=$\frac{1}{B}\sqrt{\frac{2¡Á2mU}{q}}$
¦ÁÁ£×ÓÒѾ­¹ýn´Îµç³¡¼ÓËÙ£¬ÒÔËÙ¶Èvn½øÈëD2ºÐ£¬Óɶ¯Äܶ¨Àí£º
  nUq=$\frac{1}{2}$m${v}_{n}^{2}$
¹ìµÀ°ë¾¶ rn=$\frac{m{v}_{n}}{qB}$=$\frac{1}{B}\sqrt{\frac{2nmU}{q}}$
¦ÁÁ£×ÓÒѾ­¹ýn+1´Îµç³¡¼ÓËÙ£¬ÒÔËÙ¶Èvn+1½øÈëD1ºÐ£¬Óɶ¯Äܶ¨Àí£º
  £¨n+1£©Uq=$\frac{1}{2}$m${v}_{n+1}^{2}$
¹ìµÀ°ë¾¶£ºrn+1=$\frac{m{v}_{n+1}}{qB}$=$\frac{1}{B}\sqrt{\frac{£¨n+1£©•2mU}{q}}$
Ôò¡÷x=2£¨rn+1-rn£©£¨ÈçͼËùʾ£©
½âµÃ£¬¡÷x=2£¨$\frac{1}{B}\sqrt{\frac{£¨n+1£©•2mU}{q}}$-$\frac{1}{B}\sqrt{\frac{2nmU}{q}}$£©=$\frac{2}{B}$$\sqrt{\frac{2Um}{q}}$£¨$\sqrt{n+1}$-$\sqrt{n}$£©
£¨3£©¼ÓËÙÆ÷¼ÓËÙ´øµçÁ£×ÓµÄÄÜÁ¿ÎªEk=$\frac{1}{2}$mv2=$\frac{{q}^{2}{B}^{2}{R}^{2}}{2m}$£¬
ÓɦÁÁ£×Ó»»³É뮺ˣ¬ÓÐ$\frac{{q}^{2}{B}^{2}{R}^{2}}{2m}$=$\frac{£¨\frac{q}{2}£©^{2}{B}_{1}^{2}{R}^{2}}{2£¨\frac{m}{2}£©}$£¬ÔòB1=$\sqrt{2}$B£¬¼´´Å¸ÐӦǿ¶ÈÐèÔö´óΪԭÀ´µÄ$\sqrt{2}$ ±¶£»
¸ßƵ½»Á÷µçÔ´µÄÖÜÆÚT=$\frac{2¦Ðm}{qB}$£¬ÓɦÁÁ£×Ó»»Îªë®ºËʱ£¬½»Á÷µçÔ´µÄÖÜÆÚӦΪԭÀ´µÄ$\frac{\sqrt{2}}{2}$±¶£®
 ´ð£º£¨1£©¦ÁÁ£×ÓÔÚµÚn´Î¼ÓËÙºó»ñµÃËÙÂÊ$\sqrt{\frac{2nqU}{m}}$£®
£¨2£©¦ÁÁ£×ÓÔÚµÚn´Î¼ÓËÙºóÓëµÚn+1´Î¼ÓËÙºóλÖÃÖ®¼äµÄ¾àÀë$\frac{2}{B}$$\sqrt{\frac{2Um}{q}}$£¨$\sqrt{n+1}$-$\sqrt{n}$£©£®
£¨3£©ÈôʹÓô˻ØÐý¼ÓËÙÆ÷¼ÓËÙ뮺ˣ¬ÒªÏëʹ뮺˻ñµÃÓë¦ÁÁ£×ÓÏàͬµÄ¶¯ÄÜ£¬Ôò´Å¸ÐӦǿ¶ÈÐèÔö´óΪԭÀ´µÄ$\sqrt{2}$ ±¶£¬»òÕß½»Á÷µçÔ´µÄÖÜÆÚӦΪԭÀ´µÄ$\frac{\sqrt{2}}{2}$±¶£®

µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀ»ØÐý¼ÓËÙÆ÷ÀûÓôų¡Æ«×ªºÍµç³¡¼ÓËÙʵÏÖ¼ÓËÙÁ£×Ó£¬Á£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆںͽ»Á÷µçµÄÖÜÆÚÏàµÈ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔÚÑо¿Æ½Å×ÎïÌåÔ˶¯µÄʵÑéÖУ¬ÓÃÒ»ÕÅÓ¡ÓÐС·½¸ñµÄÖ½¼Ç¼¹ì¼££¬Ð¡·½¸ñµÄ±ß³¤l=1dm£¬ÈôСÇòÔÚƽÅ×Ô˶¯Í¾Öеļ¸¸öλÖÃÈçͼÖеÄa¡¢b¡¢c¡¢dËùʾ£¬ÔòСÇòƽÅ׵ijõËٶȵļÆËãʽΪv0=2$\sqrt{gL}$£¨ÓÃl¡¢g±íʾ£©£¬ÆäÖµÊÇ2£¨È¡g=10m/s2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èçͼ£¬Ð±ÃæÓëˮƽÃæÖ®¼äµÄ¼Ð½ÇΪ45¡ã£¬ÔÚбÃæµ×¶ËAµãÕýÉÏ·½¸ß¶ÈΪ10m´¦µÄOµã£¬ÒÔ5m/sµÄËÙ¶ÈˮƽÅ׳öÒ»¸öСÇò£¬·ÉÐÐÒ»¶Îʱ¼äºóײÔÚбÃæÉÏ£¬Õâ¶Î·ÉÐÐËùÓõÄʱ¼äΪ£¨g=10m/s2£©£¨¡¡¡¡£©
A£®2 sB£®$\sqrt{2}$ sC£®1 sD£®0.5 s

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

6£®ÔÚÒÔÏÂ˵·¨ÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Ò½Ñ§ÉÏÀûÓæÃÉäÏßÖÎÁÆÖ×ÁöÖ÷ÒªÊÇÀûÓÃÁ˦ÃÉäÏߵĴ©Í¸ÄÜÁ¦Ç¿µÄÌصã
B£®ÈôÓÃƵÂʸü¸ßµÄµ¥É«¹âÕÕÉäʱ£¬Í¬¼¶Å£¶Ù»·°ë¾¶½«»á±ä´ó
C£®»úе²¨ÔÚ´«²¥²¨Ô´µÄÕñ¶¯µÄÐÎʽµÄͬʱ´«µÝÁËÄÜÁ¿
D£®Âó¿Ë¶úËï-ĪÀ×ʵÑé±íÃ÷£º²»ÂÛ¹âÔ´Óë¹Û²ìÕß×öÔõÑùµÄÏà¶ÔÔ˶¯£¬¹âËÙ¶¼ÊÇÒ»ÑùµÄ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚº¼»Õ¸ßËÙ²ý»¯¶Î£¬ÓÐÒ»¶Î³¤Îª9km¡¢Æ½¾ùƶÈΪ4.50µÄÁ¬ÐøÏÂƵÀ·£¬Ò»Á¾ÖÊÁ¿Îª10¶ÖµÄ»õ³µÔÚÔÈËÙÍê³ÉÕâ¶ÎÏÂÆÂɽ·µÄ¹ý³ÌÖУ¬ÈôÓÐ30%µÄ»úеÄÜת»¯ÎªÈÈÄÜ£¬Ôò»õ³µÊͷŵÄ×ÜÈÈÄÜΪ£¨¡¡¡¡£©
A£®107JB£®108JC£®109JD£®1010J

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÈçͼËùʾ£¬ÌõÐδų¡×é·½ÏòˮƽÏòÀ´Å³¡±ß½çÓëµØÃæƽÐУ¬´Å³¡ÇøÓò¿í¶ÈΪL=0.1m£¬´Å³¡¼ä¾àΪ2L£¬Ò»Õý·½ÐνðÊôÏß¿òÖÊÁ¿Îªm=0.1kg£¬±ß³¤Ò²ÎªL£¬×ܵç×èΪR=0.02¦¸£®ÏÖ½«½ðÊôÏß¿òÖÃÓڴų¡ÇøÓò1ÉÏ·½Ä³Ò»¸ß¶Èh´¦×ÔÓÉÊÍ·Å£¬Ïß¿òÔÚ¾­¹ý´Å³¡ÇøÓòʱbc±ßʼÖÕÓë´Å³¡±ß½çƽÐУ®µ±h=2Lʱ£¬bc±ß½øÈë´Å³¡Ê±½ðÊôÏß¿ò¸ÕºÃÄÜ×öÔÈËÙÔ˶¯£®²»¼Æ¿ÕÆø×èÁ¦£¬ÖØÁ¦¼ÓËÙ¶ÈgÈ¡10m/s2£®
£¨1£©Çó´Å¸ÐӦǿ¶ÈBµÄ´óС£»
£¨2£©Èôh£¾2L£¬´Å³¡²»±ä£¬½ðÊôÏß¿òbc±ßÿ´Î³ö´Å³¡Ê±¶¼¸ÕºÃ×öÔÈËÙÔ˶¯£¬Çó´ËÇéÐÎÖнðÊôÏß¿òÊͷŵĸ߶Èh£®
£¨3£©ÇóÔÚ£¨2£©ÇéÐÎÖУ¬½ðÊôÏß¿ò¾­¹ýÇ°n¸ö´Å³¡ÇøÓò¹ý³ÌÖÐÏß¿òÖвúÉú×ܵĽ¹¶úÈÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ò»ÖÊÁ¿ÎªmµÄ´øµçÒºµÎÒÔÊúÖ±ÏòϵijõËÙ¶Èv0½øÈëijµç³¡ÖУ®ÓÉÓڵ糡Á¦ºÍÖØÁ¦µÄ×÷Óã¬ÒºµÎÑØÊúÖ±·½ÏòÏÂÂäÒ»¶Î¾àÀëhºó£¬ËÙ¶ÈΪÁ㣮ÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®µç³¡Á¦¶ÔÒºµÎ×öµÄ¹¦Îª$\frac{1}{2}$vm02
B£®ÒºµÎ¿Ë·þµç³¡Á¦×öµÄ¹¦Îª$\frac{1}{2}$vm02+mgh
C£®ÒºµÎµÄ»úеÄܼõÉÙmgh
D£®ÒºµÎµÄµçÊÆÄÜÔö¼Ómgh

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

7£®×öÔÈËÙÔ²ÖÜÔ˶¯µÄÎïÌ壬Ô˶¯°ë¾¶Ôö´óΪԭÀ´µÄ2±¶£¬Ôò£¨¡¡¡¡£©
A£®Èç¹ûÏßËٶȴóС²»±ä£¬½ÇËٶȱäΪԭÀ´µÄ2±¶
B£®Èç¹û½ÇËٶȲ»±ä£¬ÖÜÆÚ±äΪԭÀ´µÄ2±¶
C£®Èç¹ûÖÜÆÚ²»±ä£¬ÏòÐļÓËٶȴóС±äΪԭÀ´µÄ2±¶
D£®Èç¹û½ÇËٶȲ»±ä£¬ÏßËٶȴóС±äΪԭÀ´µÄ2±¶

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Ä³Í¬Ñ§ÎªÌ½¾¿¡°ºãÁ¦×ö¹¦ÓëÎïÌ嶯ÄܸıäµÄ¹Øϵ¡±£¬ÔÚʵÑéÊÒ×é×°ÁËÒ»Ì×ÈçͼµÄ×°Öã¬Í¼1ÖÐС³µÖÊÁ¿200g£®

£¨1£©ÒÔÏÂÊǸÃͬѧµÄ²Ù×÷£¬¿ÉÄÜÔì³ÉÎó²îÓÐACD£®
A£®¾¡Á¿±£³Ö·ÅС³µµÄ³¤Ä¾°åˮƽ
B£®¾¡Á¿±£³ÖϸÏßƽÐÐÓÚ³¤Ä¾°å
C£®ÔÚÖÊÁ¿Îª10g¡¢30g¡¢50gµÄÈýÖÖ¹³ÂëÖУ¬ËûÌôÑ¡ÁËÒ»¸öÖÊÁ¿Îª50gµÄ¹³Âë¹ÒÔÚÀ­ÏߵĹҹ³PÉÏ
D£®ÏÈÊÍ·ÅС³µ£¬ºó¿ª´òµã¼ÆʱÆ÷µÄµçÔ´
£¨2£©Èçͼ2ËùʾÊÇ´òµã¼ÆʱÆ÷´ò³öµÄС³µ£¨ÖÊÁ¿Îªm£©ÔÚºãÁ¦F×÷ÓÃÏÂ×öÔȼÓËÙÖ±ÏßÔ˶¯µÄÖ½´ø£®²âÁ¿Êý¾ÝÒÑÓÃ×Öĸ±íʾÔÚͼÖУ¬´òµã¼ÆʱÆ÷µÄ´òµãÖÜÆÚΪT£¬Ôò̽¾¿½á¹ûµÄ±í´ïʽÊÇFxAB=$\frac{1}{2}$m$\frac{xB2-xA2}{4T2}$£®£¨ÓÃÌâÄ¿ºÍͼÖÐÏàÓ¦µÄ·ûºÅ±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸