·ÖÎö a¡¢¸ù¾Ý¶¯Á¿Êغ㶨ÂɺÍÄÜÁ¿Êغ㶨Âɵõ½ÖÊÁ¿Îªm1¡¢³õËÙ¶ÈΪv0µÄÎïÌåÓëÖÊÁ¿Îªm2µÄ¾²Ö¹ÎïÌå·¢ÉúÍêÈ«·Çµ¯ÐÔÅöײºóϵͳËðʧµÄ¶¯ÄÜ£¬·ÖÎöËðʧµÄ¶¯ÄÜÓëËüÃÇÖÊÁ¿µÄ¹ØÏµ£®ÔËÓÃÊýѧ¹éÄÉ·¨·ÖÎöµÚÒ»´Î¡¢µÚ¶þ´ÎÅöײºóÅöײºóϵͳµÄ×ܶ¯ÄÜ£¬µÃµ½kÔ½´ó£¬ÅöײºóϵͳµÄ×ܶ¯ÄÜԽС£¬´Ó¶øÖªµÀµ±k=2ʱ£¬È«²¿Åöײ½áÊøºóϵͳµÄ×ܶ¯ÄÜ×îС£»µ±k=$\frac{1}{2}$ʱ£¬È«²¿Åöײ½áÊøºóϵͳµÄ×ܶ¯ÄÜ×î´ó£®
b¡¢ÓÉÉÏÌâµÄ½á¹û·ÖÎöµÚÒ»´ÎÅöײºó¡¢µÚ¶þ´ÎÅöײºóϵͳµÄ×ܶ¯ÄÜ£¬·¢ÏÖ¹æÂÉ£¬µÃµ½µÚn-1´Î£¨¼´×îºóÒ»´Î£©ÅöײϵͳµÄ×ܶ¯ÄÜ£®µ±k=2ʱ×îСʣÓදÄÜ£¬µ± k=$\frac{1}{2}$ʱ×î´óÊ£ÓදÄÜ£¬´úÈëÇó³ö×îС×ܶ¯ÄܺÍ×î´ó×ܶ¯ÄܵıÈÖµ£®
½â´ð ½â£ºÖÊÁ¿Îªm1¡¢³õËÙ¶ÈΪv0µÄÎïÌåÓëÖÊÁ¿Îªm2µÄ¾²Ö¹ÎïÌå·¢ÉúÍêÈ«·Çµ¯ÐÔÅöײ£¬¸ù¾Ý¶¯Á¿Êغ㶨ÂɵÃ
m1v0=£¨m1+m2£©v
ÅöײºóϵͳµÄ×ܶ¯ÄÜ Ek=$\frac{1}{2}£¨{m}_{1}+{m}_{2}£©{v}^{2}$=$\frac{1}{2}{m}_{1}{v}_{0}^{2}$£¨$\frac{{m}_{1}}{{m}_{1}+{m}_{2}}$£© ¢Ù
ÅöײÖÐϵͳËðʧµÄ¶¯ÄÜ¡÷Ek=$\frac{1}{2}{m}_{1}{v}_{0}^{2}$-$\frac{1}{2}£¨{m}_{1}+{m}_{2}£©{v}^{2}$=$\frac{1}{2}{m}_{1}{v}_{0}^{2}$£¨$\frac{{m}_{2}}{{m}_{1}+{m}_{2}}$£© ¢Ú
a¡¢µÚÒ»´ÎÅöײºó£¬ÏµÍ³µÄ¶¯ÄÜ E1=$\frac{1}{2}m{v}_{0}^{2}£¨\frac{1}{1+k}£©$£¬ÏÔÈ»kÔ½´ó£¬E1ԽС£»
µÚ¶þ´ÎÅöײʱ£¬ÖÊÁ¿ÎªmºÍkmµÄÖé×ÓÒÔ¹²Í¬Ô˶¯µÄ¶¯ÄÜE1ÓëÖÊÁ¿Îªk2mµÄÖé×ÓÏàÅö£¬ÅöºóϵͳµÄ¶¯ÄÜ E2=E1£¨$\frac{m+km}{m+km+{k}^{2}m}$£©¡¢Ù
ÏÔÈ»kÔ½´ó£¬E2ԽС£»
ÒÀ´ËÀàÍÆ£¬¿ÉÖª£¬kÔ½´ó£¬ÅöײºóϵͳµÄ×ܶ¯ÄÜԽС£®
ËùÒÔµ±k=2ʱ£¬È«²¿Åöײ½áÊøºóϵͳµÄ×ܶ¯ÄÜ×îС£»µ±k=$\frac{1}{2}$ʱ£¬È«²¿Åöײ½áÊøºóϵͳµÄ×ܶ¯ÄÜ×î´ó£»
b¡¢ÓÉÉÏÖª£¬µÚÒ»´ÎÅöײºóϵͳµÄ×ܶ¯ÄÜ E1=$\frac{1}{2}m{v}_{0}^{2}£¨\frac{1}{1+k}£©$
µÚ¶þ´ÎÅöײºóϵͳµÄ×ܶ¯ÄÜ E2=$\frac{1}{2}m{v}_{0}^{2}£¨\frac{1}{1+k}£©$$£¨\frac{1+k}{1+k+{k}^{2}}£©$=$\frac{1}{2}m{v}_{0}^{2}$$£¨\frac{1}{1+k+{k}^{2}}£©$
¶ÔµÚn-1´Î£¨¼´×îºóÒ»´Î£©Åöײ£¬½«m1=m+km+k2m+kn-2 m£¬m2=kn-1 m£¬´úÈë¢ÙµÃ
En-1=$\frac{1}{2}m{v}_{0}^{2}£¨\frac{1}{1+k}£©$$£¨\frac{1+k}{1+k+{k}^{2}}£©$$£¨\frac{1+k+{k}^{2}+¡+{k}^{n-2}}{1+k+{k}^{2}+¡+{k}^{n-1}}£©$
=$\frac{1}{2}m{v}_{0}^{2}$£¨$\frac{1}{1+k+{k}^{2}+¡+{k}^{n-1}}$£©=$\frac{1}{2}m{v}_{0}^{2}$£¨$\frac{1-k}{1-{k}^{n}}$£©
ËùÒÔ£¬µ±k=2ʱ×îСʣÓදÄÜΪ $\frac{1}{2}m{v}_{0}^{2}$£¨$\frac{1}{{2}^{n}-1}$£©
µ± k=$\frac{1}{2}$ʱ×î´óÊ£ÓදÄÜΪ $\frac{1}{2}m{v}_{0}^{2}$£¨$\frac{1}{2-{2}^{1-n}}$£©
¹Ê×îС×ܶ¯ÄܺÍ×î´ó×ܶ¯ÄܵıÈֵΪ $\frac{2-{2}^{1-n}}{{2}^{n}-1}$£®
´ð£º
a¡¢µ±k=2ʱ£¬È«²¿Åöײ½áÊøºóϵͳµÄ×ܶ¯ÄÜ×îС£»µ±k=$\frac{1}{2}$ʱ£¬È«²¿Åöײ½áÊøºóϵͳµÄ×ܶ¯ÄÜ×î´ó£®
b¡¢×îС×ܶ¯ÄܺÍ×î´ó×ܶ¯ÄܵıÈֵΪ $\frac{2-{2}^{1-n}}{{2}^{n}-1}$£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÓÐÁ½µã£ºÒ»ÒªÕÆÎÕÍêÈ«·Çµ¯ÐÔÅöײµÄ»ù±¾¹æÂÉ£º¶¯Á¿ÊغãºÍÄÜÁ¿Êغ㣻¶þÊÇÔËÓÃÊýѧ¹éÄÉ·¨£¬·¢ÏÖÅöײºóϵͳ×ܶ¯ÄܵĹæÂÉ£¬Ð´³öͨÏîʽ£®
Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | ΢Á£´ø¸ºµç | |
B£® | µçÈÝÆ÷µÄ´øµçÁ¿Îª$\frac{CBL{v}_{0}}{2}$ | |
C£® | Èôab°ôÒÔËÙ¶È2v0Ïò×óÔ˶¯£¬Î¢Á£½«¾¹ýʱ¼ä$\sqrt{\frac{d}{g}}$µ½´ïÉϼ«°å | |
D£® | Èôab°ôÔÚÍâÁ¦×÷ÓÃÏÂÓɾ²Ö¹¿ªÊ¼ÔÚµ¼¹ìÉÏ×÷¼òгÔ˶¯£¬Ô˶¯ÖеÄ×î´óËÙ¶ÈΪv0£¬ÔòÁ÷¾2RµÄ×î´óµçÁ÷Ϊ$\frac{BL{v}_{0}}{3R}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | ÖʵãÔÚÔ˶¯¹ý³ÌÖÐËÙ¶È·½Ïò²»±ä | |
B£® | ÖʵãÔÚ8sÄÚ·¢ÉúµÄÎ»ÒÆS=3m | |
C£® | ÖʵãÔÚµÚ1sºÍµÚ4sÄ򵀮½¾ùËÙ¶È´óС²»ÏàµÈ | |
D£® | ÖʵãÔÚµÚ1sºÍµÚ4sÄڵļÓËÙ¶ÈÏàͬ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | Ô²ÅÌÉϲúÉúÁ˸ÐÓ¦µç¶¯ÊÆ | |
B£® | Ô²ÅÌÄÚµÄÎеçÁ÷²úÉúµÄ´Å³¡µ¼Ö´ÅÕëת¶¯ | |
C£® | ÔÚÔ²ÅÌת¶¯µÄ¹ý³ÌÖУ¬´ÅÕëµÄ´Å³¡´©¹ýÕû¸öÔ²Å̵ĴÅͨÁ¿·¢ÉúÁ˱仯 | |
D£® | Ô²ÅÌÖеÄ×ÔÓɵç×ÓËæÔ²ÅÌÒ»ÆðÔ˶¯ÐγɵçÁ÷£¬´ËµçÁ÷²úÉúµÄ´Å³¡µ¼Ö´ÅÕëת¶¯ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | Ö§¼Ü¶ÔµØÃæµÄѹÁ¦´óСΪ2.0N | |
B£® | Á½ÏßÉϵÄÀÁ¦´óСF1=F2=1.9N | |
C£® | ½«BˮƽÓÒÒÆ£¬Ê¹M¡¢A¡¢BÔÚͬһֱÏßÉÏ£¬´ËʱÁ½ÏßÉϵÄÀÁ¦´óСF1=1.225N£¬F2=1.0N | |
D£® | ½«BÒÆµ½ÎÞÇîÔ¶´¦£¬Á½ÏßÉϵÄÀÁ¦´óСF1=F2=0.866N |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com