精英家教网 > 高中物理 > 题目详情

【题目】小球从空中自由下落,与地面相碰后竖直弹起,其速度v随时间t的变化关系如图所示。则

A. 小球刚弹起时的速度大小为6 m/s

B. 碰撞前后小球的速度改变量的大小为4 m/s

C. 小球反弹后上升的最大高度为1.8 m

D. 小球是从10 m高处自由下落的

【答案】AC

【解析】由图象可知:1s末物体反弹,此时速度的大小为6m/s,故A正确;碰撞时速度的改变量为v=-6m/s-10m/s=-16m/s,则速度的改变量大小为16m/s,故B错误;小球能弹起的最大高度对应图中1s-1.6s内速度图象的面积,所以,故C正确;根据v-t图象中速度图象与时间轴围成的面积表示位移可得,小球下落的高度为:,故D错误。所以AC正确,BD错误。

练习册系列答案
相关习题

科目:高中物理 来源: 题型:

【题目】如图,电子在电势差为的加速电场中由静止开始运动,然后射入电势差为的两块平行极板间的电场中,入射方向跟极板平行.整个装置处在真空中,重力可忽略.在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角变大的是(

A. 变大, 变大 B. 变小, 变大

C. 变大, 变小 D. 变小, 变小

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】在描绘一个标有“63V 03A”小灯泡的伏安特性曲线的实验中,要求灯泡两端的电压由零逐渐增加到63V,并便于操作。

已选用的器材有:

学生电源(电动势为9V,内阻约);

电流表(量程为0~06A,内阻约0;量程为0~3A,内阻约004Ω);

电压表(量程为0~3V,内阻约3kΩ0~15V,内阻约15kΩ);

开关一个、导线若干。

1)实验中还需要选择一个滑动变阻器,现有以下两个滑动变阻器,则应选其中的 (选填选项前的字母)。

A.滑动变阻器(最大阻值10Ω,最大允许电流1A

B.滑动变阻器(最大阻值1500Ω,最大允许电流03A

2)实验电路图应选用图中的 (选填)。

3)请根据(2)中所选的电路图,补充完成图中实物电路的连线。

4)接闭合关,改变滑动变阻器滑动端的位置,并记录对应的电流表示数I、电压表示数U。某次测量中电流表选择0~06A量程,电压表选择0~15V量程,电流表、电压表示数如图所示,可知该状态下小灯泡电阻的测量值 Ω(计算结果保留两位有效数字)。

5)根据实验数据,画出的小灯泡I-U图线如图所示。由此可知,当小灯泡两端的电压增加时,小灯泡的电阻值将 (选填变大变小)。

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,倾角为θ=37°足够长平行导轨顶端bc间、底端ad间分别连一电阻,其阻值为R1=R2=2r,两导轨间距为L=1m。在导轨与两个电阻构成的回路中有垂直于轨道平面向下的磁场,其磁感应强度为B1=1T。在导轨上横放一质量m=1kg、电阻为r=1Ω、长度也为L的导体棒ef,导体棒与导轨始终良好接触,导体棒与导轨间的动摩擦因数为μ=0.5。在平行导轨的顶端通过导线连接一面积为S=0.5m2、总电阻为r、匝数N=100的线圈(线圈中轴线沿竖直方向),在线圈内加上沿竖直方向,且均匀变化的磁场B2(图中未画),连接线圈电路上的开关K处于断开状态,g=10m/s2,不计导轨电阻。

求:

(1)从静止释放导体棒,导体棒能达到的最大速度是多少?

(2)导体棒从静止释放到稳定运行之后的一段时间内,电阻R1上产生的焦耳热为Q=0.5J,那么导体下滑的距离是多少

(3)现闭合开关K,为使导体棒静止于倾斜导轨上,那么在线圈中所加磁场的磁感应强度的方向及变化率大小的取值范围

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】某火星探测实验室进行电子计算机模拟实验,结果为探测器在近火星表面轨道做圆周运动的周期是T,探测器着陆过程中,第一次接触火星表面后,以v0的初速度竖直反弹上升,经t时间再次返回火星表面,设这一过程只受火星的重力作用,且重力近似不变.已知引力常量为G,试求:

(1)火星的密度

(2)火星的半径

(3)火星的第一宇宙速度?

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,cd位于MN的中垂线上,且abcd到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是(  )

A. O点处的磁感应强度为零

B. ab两点处的磁感应强度大小不相等,方向相同

C. cd两点处的磁感应强度大小相等,方向相同

D. ac两点处磁感应强度的方向不同

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】在高能物理研究中,粒子加速器起着重要作用,而早期的加速器只能使带电粒子在高压电场中加速一次,因而粒子所能达到的能量受到高压技术的限制。1930年,Earnest O. Lawrence提出了回旋加速器的理论,他设想用磁场使带电粒子沿圆弧形轨道旋转,多次反复地通过高频加速电场,直至达到高能量。图12甲为Earnest O. Lawrence设计的回旋加速器的示意图。它由两个铝制D型金属扁盒组成,两个D形盒正中间开有一条狭缝;两个D型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D型盒上半面中心S处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D型盒中。在磁场力的作用下运动半周,再经狭缝电压加速;为保证粒子每次经过狭缝都被加速,应设法使交变电压的周期与粒子在狭缝及磁场中运动的周期一致。如此周而复始,最后到达D型盒的边缘,获得最大速度后被束流提取装置提取出。已知正离子的电荷量为q,质量为m,加速时电极间电压大小恒为U,磁场的磁感应强度为BD型盒的半径为R,狭缝之间的距离为d。设正离子从离子源出发时的初速度为零。

(1)试计算上述正离子从离子源出发被第一次加速后进入下半盒中运动的轨道半径;

(2)尽管粒子在狭缝中每次加速的时间很短但也不可忽略。试计算上述正离子在某次加速过程当中从离开离子源到被第n次加速结束时所经历的时间;

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,有一提升重物用的直流电动机,内阻RM=0.6 Ω,R=10 Ω,U=160 V,电压表的读数为110 V.则:

(1)通过电动机的电流是多少?

(2)输入到电动机的电功率是多少?

(3)电动机工作1 h所产生的热量是多少(结果保留两位有效数位)?

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】一电路如图所示,电源电动势E=28V,内阻r=2Ω,电阻=12Ω C为平行板电容器,其电容C=3.0pF,虚线到两极板距离相等,极板长L=0.20m,两极板的间距d=1.0×10-2m

1)若开关S处于断开状态,则当其闭合后,求流过R4的总电量为多少?

2)若开关S断开时,有一带电微粒沿虚线方向以v0=2.0m/s的初速度射入C的电场中,刚好沿虚线匀速运动,问:当开关S闭合后,此带电微粒以相同初速度沿虚线方向射入C的电场中,能否从C的电场中射出?(要求写出计算和分析过程,g10m/s2

查看答案和解析>>

同步练习册答案