9£®¾Ý̽²â£¬ÓîÖæÖпÉÄÜ´æÔÚÒ»ÖÖÔ¶ÀëÆäËûºãÐǵÄËÄÐÇϵͳ£¬ÆäÖÐÓÐÒ»ÖÖËÄÐÇϵͳµÄÄ£ÐÍÈçͼËùʾ£¬Ôڱ߳¤ÎªRµÄÕýÈý½ÇÐεÄÈý¸ö¶¥µãÉϸ÷ÓÐÒ»ÖÊÁ¿ÎªmµÄÐÇÌ壬ÔÚÈý½ÇÐεÄÖÐÐÄÓÐÖÊÁ¿ÎªMµÄÁíÒ»¿ÅÐÇ£¬´¦ÔÚÈý½ÇÐζ¥µãÉϵÄÈý¿ÅÐǾùÈÆ´¦ÓÚ¾²Ö¹×´Ì¬µÄλÓÚÈý½ÇÐÎÖÐÐĵÄÐÇÌå×öÔÈËÙÔ²ÖÜÔ˶¯£¬²»¿¼ÂÇÆäËûÐÇÌå¶Ô¸ÃϵͳµÄÓ°Ï죬ÒÑÖªÒýÁ¦³£Á¿ÎªG£¬ÇóÈý½ÇÐζ¥µãÉϵÄÐÇÌå×öÔÈËÙÔ²ÖÜÔ˶¯µÄÖÜÆÚºÍÏßËٶȣ®

·ÖÎö ÏÈд³öÈÎÒâÁ½¸öÐÇÐÇÖ®¼äµÄÍòÓÐÒýÁ¦£¬Çóÿһ¿ÅÐÇÐÇÊܵ½µÄºÏÁ¦£¬¸ÃºÏÁ¦ÌṩËüÃǵÄÏòÐÄÁ¦£®
È»ºóÓÃR±í´ï³öËüÃǵĹìµÀ°ë¾¶£¬×îºóд³öÓÃÖÜÆÚºÍÏßËٶȱí´ïµÄÏòÐÄÁ¦µÄ¹«Ê½£¬ÕûÀí¼´¿ÉµÄ³ö½á¹û£®

½â´ð ½â£º¶Ô¶¥µãÉϵÄÈÎÒ»ÐÇÌåÊܵ½ÆäËüÐÇÌåµÄÍòÓÐÒýÁ¦£¬ÓУº${F}_{1}^{\;}={F}_{2}^{\;}=G\frac{{m}_{\;}^{2}}{{R}_{\;}^{2}}$
ÔÈËÙÔ²ÖÜÔ˶¯µÄ¹ìµÀ°ë¾¶Îª£º$r=\frac{\frac{R}{2}}{cos30¡ã}=\frac{R}{\sqrt{3}}$
${F}_{3}^{\;}=G\frac{Mm}{£¨\frac{R}{\sqrt{3}}£©_{\;}^{2}}=3G\frac{Mm}{{R}_{\;}^{2}}$
¶ÔÈÎÒ»ÐÇÌåÊܵ½µÄºÏÁ¦Îª£º${F}_{ºÏ}^{\;}=\sqrt{3}{F}_{1}^{\;}+{F}_{3}^{\;}$=$\frac{\sqrt{3}G{m}_{\;}^{2}}{{R}_{\;}^{2}}+3G\frac{Mm}{{R}_{\;}^{2}}$
¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÓУº$\frac{\sqrt{3}G{m}_{\;}^{2}}{{R}_{\;}^{2}}+3G\frac{Mm}{{R}_{\;}^{2}}=m\frac{{v}_{\;}^{2}}{r}=m\frac{4{¦Ð}_{\;}^{2}}{{T}_{\;}^{2}}r$
½âµÃ£º$v=\sqrt{\frac{Gm}{R}+\frac{\sqrt{3}GM}{R}}=\sqrt{\frac{G£¨m+\sqrt{3}M£©}{R}}$
ÖÜÆÚ£º$T=\frac{2¦Ðr}{v}=\frac{2¦ÐR}{\sqrt{3}}\sqrt{\frac{R}{G£¨m+\sqrt{3}M£©}}$=$2¦ÐR\sqrt{\frac{R}{G£¨3m+3\sqrt{3}M£©}}$
´ð£ºÈý½ÇÐζ¥µãÉϵÄÐÇÌå×öÔÈËÙÔ²ÖÜÔ˶¯µÄÖÜÆÚ$2¦ÐR\sqrt{\frac{R}{G£¨3m+3\sqrt{3}M£©}}$ºÍÏßËÙ¶È$\sqrt{\frac{G£¨m+\sqrt{3}M£©}{R}}$

µãÆÀ ½â¾ö¸ÃÌâÊ×ÏÈÒªÀí½âÄ£ÐÍËùÌṩµÄÇé¾°£¬È»ºóÄܹ»ÁгöºÏÁ¦ÌṩÏòÐÄÁ¦µÄ¹«Ê½£¬²ÅÄÜÕýÈ·½â´ðÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èçͼ¼×Ëùʾ£¬Ò»¸öµç×èֵΪR£¬ÔÑÊýΪnµÄÔ²ÐνðÊôÏßȦÓë×èֵΪ2RµÄµç×èR1Á¬½Ó³É±ÕºÏ»Ø·£¬ÏßȦµÄ°ë¾¶Îªr1£®ÔÚÏßȦÖа뾶Ϊr2µÄÔ²ÐÎÇøÓòÄÚ´æÔÚ´¹Ö±ÓÚÏßȦƽÃæÏòÀïµÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈBËæʱ¼ät±ä»¯µÄ¹ØϵͼÏßÈçͼÒÒËùʾ£®Í¼ÏßÓëºá¡¢×ÝÖáµÄ½Ø¾à·Ö±ðΪt0ºÍB0£®µ¼Ïߵĵç×è²»¼Æ£®ÔÚ0ÖÁt1ʱ¼äÄÚͨ¹ýR1µÄµçÁ÷´óСºÍ·½Ïò£®£¨¡¡¡¡£©
A£®µçÁ÷´óСΪ$\frac{¦Ðn{B}_{0}{r}_{1}^{2}}{3R{t}_{0}}$£¬µçÁ÷·½ÏòÓÉaµ½bͨ¹ýR1
B£®µçÁ÷´óСΪ$\frac{¦Ðn{B}_{0}{r}_{2}^{2}}{3R{t}_{0}}$£¬µçÁ÷·½ÏòÓÉaµ½bͨ¹ýR1
C£®µçÁ÷´óСΪ$\frac{¦Ðn{B}_{0}{r}_{1}^{2}}{3R{t}_{0}}$£¬µçÁ÷·½ÏòÓÉbµ½aͨ¹ýR1
D£®µçÁ÷´óСΪ$\frac{¦Ðn{B}_{0}{r}_{2}^{2}}{3R{t}_{0}}$£¬µçÁ÷·½ÏòÓÉbµ½aͨ¹ýR1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÊµÑéÌâ

20£®¼×ÒÒÁ½¸öͬѧ¹²Í¬×ö¡°Ñé֤ţ¶ÙµÚ¶þ¶¨ÂÉ¡±µÄʵÑ飬װÖÃÈçͼËùʾ£®¡¡¡¡
¢ÙÁ½Î»Í¬Ñ§ÓÃíÀÂëÅÌ£¨Á¬Í¬íÀÂ룩µÄÖØÁ¦×÷ΪС³µ£¨¶ÔÏó£©Êܵ½ µÄºÏÍâÁ¦£¬ÐèҪƽºâ×ÀÃæµÄĦ²ÁÁ¦¶ÔС³µÔ˶¯µÄÓ°Ï죮ËûÃǽ«³¤Ä¾°åµÄÒ»¶ËÊʵ±µæ¸ß£¬ÔÚ²»¹ÒíÀÂëÅ̵ÄÇé¿öÏ£¬Ð¡³µÄܹ»×ÔÓɵØ×öÔÈËÙÖ±ÏßÔ˶¯£®ÁíÍ⣬»¹Ó¦Âú×ãíÀÂëÅÌ£¨Á¬Í¬íÀÂ룩µÄÖÊÁ¿mԶСÓÚС³µµÄÖÊÁ¿M£®£¨ÌԶСÓÚ¡±¡¢¡°Ô¶´óÓÚ¡±»ò¡°½üËƵÈÓÚ¡±£©½ÓÏÂÀ´£¬¼×ͬѧÑо¿£ºÔÚ±£³ÖС³µµÄÖÊÁ¿²»±äµÄÌõ¼þÏ£¬Æä¼ÓËÙ¶ÈÓëÆäÊܵ½µÄÇ£ÒýÁ¦µÄ¹Øϵ£»ÒÒͬѧÑо¿£ºÔÚ±£³ÖÊܵ½µÄÇ£ÒýÁ¦²»±äµÄÌõ¼þÏ£¬Ð¡³µµÄ¼ÓËÙ¶ÈÓëÆäÖÊÁ¿µÄ¹Øϵ£®
¢Ú¼×ͬѧͨ¹ý¶ÔС³µËùÇ£ÒýÖ½´øµÄ²âÁ¿£¬¾ÍÄܵóöС³µµÄ¼ÓËÙ¶Èa£®Í¼2ÊÇij´ÎʵÑéËù´ò³öµÄÒ»ÌõÖ½´ø£¬ÔÚÖ½´øÉϱê³öÁË5¸ö¼ÆÊýµã£¬ÔÚÏàÁÚµÄÁ½¸ö¼ÆÊýµãÖ®¼ä»¹ÓÐ4¸öµãδ±ê³ö£¬Í¼ÖÐÊý¾ÝµÄµ¥Î»ÊÇcm£®ÊµÑéÖÐʹÓõĵçÔ´ÊÇƵÂÊf=50HzµÄ½»±äµçÁ÷£®¸ù¾ÝÒÔÉÏÊý¾Ý£¬¿ÉÒÔËã³öС³µµÄ¼ÓËÙ¶Èa=0.343m/s2£®£¨½á¹û±£ÁôÈýλÓÐЧÊý×Ö£©
¢ÛÒÒͬѧͨ¹ý¸øС³µÔö¼ÓíÀÂëÀ´¸Ä±äС³µµÄÖÊÁ¿M£¬µÃµ½Ð¡³µµÄ¼ÓËÙ¶ÈaÓëÖÊÁ¿MµÄÊý¾Ý£¬»­³öa-$\frac{1}{M}$ͼÏߺ󣬷¢ÏÖ£ºµ±$\frac{1}{M}$½Ï´óʱ£¬Í¼Ïß·¢ÉúÍäÇú£®ÓÚÊÇ£¬¸ÃͬѧºóÀ´ÓÖ¶ÔʵÑé·½°¸½øÐÐÁ˽øÒ»²½µØÐÞÕý£¬±ÜÃâÁËͼÏßµÄÄ©¶Ë·¢ÉúÍäÇúµÄÏÖÏó£®ÄÇô£¬¸ÃͬѧµÄÐÞÕý·½°¸¿ÉÄÜÊÇA£®
A£®¸Ä»­aÓë$\frac{1}{M+m}$µÄ¹ØϵͼÏß      B£®¸Ä»­aÓ루M+m£©µÄ¹ØϵͼÏß
C£®¸Ä»­ aÓë$\frac{m}{M}$µÄ¹ØϵͼÏß            D£®¸Ä»­aÓë$\frac{1}{£¨M+m£©^{2}}$µÄ¹ØϵͼÏߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚÓÃÈçͼ×öÑéÖ¤»úеÄÜÊغ㶨ÂÉʵÑéʱ£¬·¢ÏÖÖØÎï¼õÉÙµÄÖØÁ¦ÊÆÄÜ×ÜÊÇ´óÓÚÖØÎïÔö¼ÓµÄ¶¯ÄÜ£¬Ôì³ÉÕâÖÖÏÖÏóµÄÔ­ÒòÊÇ£¨¡¡¡¡£©
A£®Ñ¡ÓõÄÖØÎïÖÊÁ¿¹ý´ó
B£®ÖØÎïÖÊÁ¿²âÁ¿²»×¼È·
C£®¿ÕÆø¶ÔÖØÎïµÄ×èÁ¦ºÍ´òµã¼ÆʱÆ÷¶ÔÖ½´øµÄ×èÁ¦
D£®ÊµÑéʱ²Ù×÷²»Ì«×Ðϸ£¬ÊµÑéÊý¾Ý²âÁ¿²»×¼È·

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÊµÑéÌâ

4£®Ä³Í¬Ñ§²ÉÓÃÈçͼ¼×ËùʾµÄ×°ÖÃÀ´¡°Ì½¾¿¶¯Äܶ¨Àí¡±£®
£¨1£©Í¼¼×ÖУ¬Ð¡³µ´¦ÓÚ´ýÊÍ·Å״̬£¬²»Ç¡µ±µÄµØ·½ÓУº¢ÙС³µÀë´òµã¼ÆʱÆ÷Ì«Ô¶£»¢Ú¶¨»¬ÂÖÓëС³µÖ®¼äµÄϸÏßûÓÐÓëľ°åƽÐУ»¢ÛûÓÐƽºâĦ²ÁÁ¦£®

£¨2£©½«ÊµÑé×°Öõ÷ÕûºÃÒÔºó£¬ÕýÈ·²Ù×÷´ò³öÒ»ÌõÖ½´øÈçͼÒÒËùʾ£¬ÆäÖÐOµãΪ´òµãµÄÆðʼµã£¬ÏàÁÚÁ½¸ö¼ÆÊýµã¼ä¾ùÓÐ4¸öµãδ»­³ö£¬ÒÑÖª´òµã¼ÆʱÆ÷ʹÓõĽ»Á÷µçÔ´µÄƵÂÊΪ50Hz£¬Ôò´òBµãʱ£¬Ð¡³µµÄËÙ¶ÈvB=0.40m/s£¨½á¹û±£ÁôÁ½Î»ÓÐЧÊý×Ö£©£»Èç¹û̽¾¿´ÓС³µÊͷŵ½´òBµã¹ý³Ì¹³ÂëÖØÁ¦×öµÄ¹¦ÓëС³µ¶¯Äܱ仯Á¿µÄ¹Øϵ£¬³ýÁ˹³ÂëÖÊÁ¿¡¢Ö½´øÉϵÄÊý¾ÝÍ⣬»¹ÐèÒª²âÁ¿µÄÎïÀíÁ¿ÊÇС³µµÄÖÊÁ¿£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ

14£®ÈçͼËùʾ£¬¹â»¬Ë®Æ½ÃæÉÏÓÐÒ»×ó¶Ë¿¿Ç½µÄ³¤°å³µ£¬³µµÄÉϱíÃæBC¶ÎÊÇˮƽ¹ìµÀ£¬Ë®Æ½¹ìµÀ×ó²àÊǹ̶¨ÔÚ³µÉϵÄÒ»¹â»¬Ð±Ãæ¹ìµÀ£¬Ð±Ãæ¹ìµÀÓëˮƽ¹ìµÀÔÚBµãƽ»¬Á¬½Ó£®CµãµÄÓÒ²à¹â»¬£¬³¤°å³µµÄÓҶ˹̶¨Ò»¸ö´¦ÓÚÔ­³¤×´Ì¬µÄÇᵯ»É£¬µ¯»É×ÔÓɶËÇ¡ÔÚCµã£®ÖÊÁ¿m=1kgµÄÎï¿é£¨ÊÓΪÖʵ㣩´ÓбÃæÉÏAµãÓɾ²Ö¹»¬Ï£¬A¡¢B¼äµÄ¸ß¶Èh=1.8 m£¬¾­ABºÍBC¶ÎºóѹËõµ¯»É£¬µ¯»Éµ¯ÐÔÊÆÄܵÄ×î´óÖµEp=3J£®Ð±ÃæºÍ³¤°å³µµÄ×ÜÖÊÁ¿M=2kg£®Îï¿éÓ볤°å³µµÄˮƽ¹ìµÀ¼äµÄ¶¯Ä¦²ÁÒòÊý¦Ì=0.3£¬gÈ¡10m/s2£¬Çó£º
¢Ù³µµÄÉϱíÃæBC¶ÎµÄ³¤¶È£»
¢ÚÎï¿éÏòÓÒѹËõµ¯»ÉµÄ¹ý³ÌÖУ¬µ¯»É¶ÔÎï¿éµÄ³åÁ¿´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

1£®ÈçͼËùʾ£¬ÊúÖ±»·A°ë¾¶Îªr£¬¹Ì¶¨ÔÚľ°åBÉÏ£¬Ä¾°åB·ÅÔÚˮƽµØÃæÉÏ£¬BµÄ×óÓÒÁ½²à¸÷ÓÐÒ»µ²°å¹Ì¶¨ÔÚµØÉÏ£¬B²»ÄÜ×óÓÒÔ˶¯£¬ÔÚ»·µÄ×îµÍµã¾²·ÅÓÐһСÇòC£¬A¡¢B¡¢CµÄÖÊÁ¿¾ùΪm£¬ÏÖ¸øСÇòһˮƽÏòÓÒµÄ˲ʱËÙ¶Èv£¬Ð¡Çò»áÔÚÔ²»·ÄÚ²à×öÔ²ÖÜÔ˶¯£¬Îª±£Ö¤Ð¡ÇòÄÜͨ¹ý»·µÄ×î¸ßµã£¬ÇÒ²»»áʹ»·ÔÚÊúÖ±·½ÏòÉÏÌøÆ𣬳õËÙ¶Èv±ØÐëÂú×㣨¡¡¡¡£©
A£®×îСֵΪ$\sqrt{4gr}$B£®×î´óֵΪ$\sqrt{6gr}$C£®×îСֵΪ$\sqrt{5gr}$D£®×î´óֵΪ$\sqrt{7gr}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÈÇ¿´Å³¡ÖÐÓÐÒ»¶Î³¤Îª0.2mµÄÖ±µ¼Ïߣ¬ËüÓë´Å³¡·½Ïò´¹Ö±£¬µ±Í¨¹ý2.0AµÄµçÁ÷ʱ£¬Êܵ½0.8NµÄ°²ÅàÁ¦£¬´Å³¡´Å¸ÐӦǿ¶ÈÊÇ2T£»µ±Í¨¹ýµÄµçÁ÷¼Ó±¶Ê±£¬µ¼ÏßËùÊÜ°²ÅàÁ¦´óСΪ1.6N£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁÐÎïÀíÁ¿ÊôÓÚʸÁ¿µÄÊÇ£¨¡¡¡¡£©
A£®Ê±¼äB£®ÖÊÁ¿C£®¶¯ÄÜD£®ËÙ¶È

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸