精英家教网 > 高中物理 > 题目详情
5.如图所示,足够长的光滑金属导轨与水平面的夹角为θ,两导轨间距为L,在导轨上端接入电源和滑动变阻器,电源电动势为E,内阻为r.一质量为m的导体棒ab与两导轨垂直并接触良好,整个装置处于磁感应强度为B,垂直于斜面向上的匀强磁场中,导轨与导体棒的电阻不计.
(1)若要使导体棒ab静止于导轨上,求滑动变阻器的阻值应取何值;
(2)若将滑动变阻器的阻值取为零,由静止释放导体棒ab,求释放瞬间导体棒ab的加速度;
(3)求第(2)问所示情况中导体棒ab所能达到的最大速度的大小.

分析 (1)导体棒静止于导轨上,受重力、支持力和安培力处于平衡,根据安培力大小公式、闭合电路欧姆定律,结合共点力平衡求出滑动变阻器的阻值.
(2)根据闭合电路欧姆定律求出电流的大小,从而得出导体棒所受的安培力,根据牛顿第二定律求出释放导体棒ab的加速度.
(3)当重力下滑分力与安培力相等时,导体棒ab达到最大速度,根据平衡求出最大速度.

解答 解:(1)若要使导体棒ab静止于导轨上,则要求导体棒ab所受的重力、支持力、安培力三力平衡,导体棒在沿斜面方向的受力满足:mgsinθ=F
其中F=BIL,
设导体棒ab静止时变阻器的阻值为R,由闭合电路欧姆定律有:$I=\frac{E}{R+r}$,
解得R=$\frac{BEL}{mgsinθ}-r$.
(2)当变阻器的阻值为零时,回路中的电流大于使导体棒ab静止时的电流,安培力大于使导体棒ab静止时的安培力,因此,由静止开始释放的瞬间,导体棒的加速度方向沿斜面向上.
由牛顿第二定律:F-mgsinθ=ma,
其中F=BIL,
由闭合电路欧姆定律:I=$\frac{E}{r}$,
解得释放瞬间导体棒ab的加速度a=$\frac{ELB}{mr}-gsinθ$.
(3)当重力下滑分力与安培力相等时,导体棒ab达到最大速度vm
即当mgsinθ=BIL时,达到最大速度.
此时导体棒中由于切割产生的E=BLvm
由闭合电路欧姆定律,此时回路中的电流I=$\frac{E-BL{v}_{m}}{r}$.
解得${v}_{m}=\frac{EBL-mgrsinθ}{{B}^{2}{L}^{2}}$.
答:(1)滑动变阻器的阻值应取$\frac{BEL}{mgsinθ}-r$;
(2)释放瞬间导体棒ab的加速度为$\frac{ELB}{mr}-gsinθ$;
(3)导体棒ab所能达到的最大速度的大小为$\frac{EBL-mgrsinθ}{{B}^{2}{L}^{2}}$.

点评 本题是金属棒平衡问题和动力学问题,关键分析受力情况,特别是分析和计算安培力的大小.难度中等.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

6.图中曲线a、b、c、d为气泡室中某放射物发生衰变放出的部分粒子的径迹,气泡室中磁感应强度方向垂直于纸面向里.以下判断可能正确的是(  )
A.a、b为β粒子的径迹B.a、b为γ粒子的径迹
C.c、d为α粒子的径迹D.c、d为β粒子的径迹

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

16.如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一磁感应强度为B的匀强磁场区域,MN和M′N′是匀强磁场区域的水平边界,边界的宽度为S,并与线框的bc边平行,磁场方向与线框平面垂直.现让金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的v-t图象(其中OA、BC、DE相互平行).已知金属线框的边长为L(L<S)、质量为m,电阻为R,当地的重力加速度为g,图象中坐标轴上所标出的字母v1、v2、t1、t2、t3、t4均为已知量.(下落过程中bc边始终水平)根据题中所给条件,以下说法正确的是(  )
A.t2是线框全部进入磁场瞬间,t4是线框全部离开磁场瞬间
B.从bc边进入磁场起一直到ad边离开磁场为止,感应电流所做的功为2mgS
C.V1的大小可能为$\frac{mgR}{{B}^{2}{L}^{2}}$
D.线框穿出磁场过程中流经线框横截面的电荷量比线框进入磁场过程中流经框横截面的电荷量多

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

13.一个气泡,在恒温的水池底部逐渐上升,在气泡上升过程中(不考虑气泡内气体的分子势能的变化),下列表述正确的是(  )
A.气泡内气体对外做正功B.气泡的内气体的内能增大
C.气泡内气体压强变大D.气泡内气体吸热全部用于对外做功

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

20.在真空中有一正方体玻璃砖,其截面如图所示,已知它的边长为d,在AB面上方有一单色点光源S,从S发出的光线SP以60°入射角从AB面中点射入,从侧面AD射出时,出射光线偏离入射光线SP的偏向角为30°,若光从光源S到AB面上P点的传播时间和它在玻璃砖中传播的时间相等.求点光源S到P点的距离.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

10.有一辆质量为170kg、输出功率为1440W的太阳能试验汽车,安装有约6m2的太阳能电池板和蓄能电池,该电池板在有效光照条件下单位面积输出的电功率为30W/m2.若驾驶员的质量为70kg,汽车最大行驶速度为90km/h.假设汽车行驶时受到的空气阻力与其速度成正比,则汽车(  )
A.以最大速度行驶时牵引力大小为57.6N
B.起动时的加速度大小为0.24 m/s2
C.保持最大速度行驶1 h至少需要有效光照10 h
D.直接用太阳能电池板提供的功率可获得约为8.8 m/s的最大行驶速度

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

17.如图所示,在倾角为30°的光滑绝缘斜面上有一质量为m、带电量为+q的小球,小球被一绝缘轻质细线系于斜面上的O点,悬点O到球心间的距离为L,并且空间存在有一沿斜面向下的匀强电场,其电场强度为E,若要使小球能在斜面上绕O点作圆周运动,则小球过最高点的速度大小至少为多少?其过最低点时对绳的拉力至少为多大?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

14.如图所示,位于竖直平面内的粗糙斜轨道AB与光滑水平轨道BC及竖直光滑半圆形轨道CD平滑连接,半圆轨道的直径DC垂直于BC,斜轨道的倾角θ=37°,圆形轨道的半径为R.一质量为m的小滑块(可看作质点)从高为H的斜轨道上的P点由静止开始下滑,然后从直轨道进入圆形轨道运动,运动到圆形轨道的最高点D时对轨道的压力大小恰与重力相等,小滑块过最高点D后做平抛运动,恰好垂直撞击在斜轨道的Q点.已知sin37°=0.6,cos37°=0.8,重力加速度为g,求:
(1)滑块运动到圆形轨道最高点时的速度大小.
(2)滑块与斜轨道间的动摩擦因数μ.
(3)水平轨道BC的长度.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.一静止物体由A点出发沿直线运动,做了5s匀加速运动后,接着做了3s匀减速运动后速度为零到达B点,已知AB相距20m,求:
(1)运动中的最大速度;
(2)加速段的加速度与减速段的加速度大小之比.

查看答案和解析>>

同步练习册答案