精英家教网 > 高中物理 > 题目详情
11.如图所示,坐标系xOy在竖直平面内,x轴沿水平方向.x>0的区域有垂直于坐标平面向外的匀强磁场,磁感应强度大小为B1;第三象限同时存在着垂直于坐标平面向外的匀强磁场和竖直向上的匀强电场,磁感应强度大小为B2,电场强度大小为E.x>0的区域固定一与x轴成θ=30°角的绝缘细杆.一穿在细杆上的带电小球a沿细杆匀速滑下,从N点恰能沿圆周轨道运动到x轴上的Q点,且速度方向垂直于x轴.已知Q点到坐标原点O的距离为$\frac{3}{2}$L,重力加速度为g,B1=7E$\sqrt{\frac{1}{10πgL}}$,B2=E$\sqrt{\frac{5π}{6gL}}$.空气阻力忽略不计,求:
(1)带电小球a的电性及其比荷$\frac{q}{m}$;
(2)带电小球a与绝缘细杆的动摩擦因数μ;
(3)当带电小球a刚离开N点时,从y轴正半轴距原点O为h=$\frac{20πL}{3}$的P点(图中未画出)以某一初速度平抛一个不带电的绝缘小球b,b球刚好运动到x轴与向上运动的a球相碰,则b球的初速度为多大?

分析 (1)粒子在第3象限做匀速圆周运动,重力和电场力平衡,洛伦兹力提供向心力,根据平衡条件求解电场强度;
(2)带电小球在第3象限做匀速圆周运动,画出轨迹,结合几何关系得到半径,然后结合牛顿第二定律求解速度;带电小球a穿在细杆上匀速下滑,受重力、支持力和洛伦兹力,三力平衡,根据共点力平衡条件并结合合成法列式求解;
(3)绝缘小球b做平抛运动,根据平抛运动的分运动公式求解运动到x轴的时间;小球a在第3象限做圆周运动,第2象限做竖直上抛运动,分阶段求解出其经过x轴的时间,然后根据等时性列式.

解答 解:(1)由带电小球在第三象限内做匀速圆周运动可得:带电小球带正电,且mg=qE,解得:
$\frac{q}{m}=\frac{g}{E}$
(2)带电小球从N点运动到Q点的过程中,有:
$qv{B_2}=m\frac{v^2}{R}$
由几何关系有:$R+Rsinθ=\frac{3}{2}l$
联解得:$v=\sqrt{\frac{5πgl}{6}}$
带电小球在杆上匀速时,由平衡条件有:mgsinθ=μ(qvB1-mgcosθ)
解得:$μ=\frac{{\sqrt{3}}}{4}$
(3)带电小球在第三象限内做匀速圆周运动的周期为:
$T=\frac{2πR}{v}=\sqrt{\frac{24πl}{5g}}$
带电小球第一次在第二象限竖直上下运动的总时间为:
${t_0}=\frac{2v}{g}=\sqrt{\frac{10πl}{3g}}$
绝缘小球b平抛运动垤x轴上的时间为:
$t=\sqrt{\frac{2h}{g}}=2\sqrt{\frac{10πl}{3g}}$
两球相碰有:$t=\frac{T}{3}+n({t_0}+\frac{T}{2})$
联解得:n=1
设绝缘小球b平抛的初速度为v0,则:$\frac{7}{2}l={v_0}t$
解得:${v_0}=\sqrt{\frac{147gl}{160π}}$
答:(1)带电小球a的电性及其比荷$\frac{q}{m}$是$\frac{g}{E}$;
(2)带电小球a与绝缘细杆的动摩擦因数μ是$\frac{\sqrt{3}}{4}$;
(3)b球的初速度为$\sqrt{\frac{147gl}{160π}}$;

点评 本题多物体、多过程、多规律,是典型的三多问题;关键是明确两个小球的运动规律,然后分阶段根据牛顿第二定律、平衡条件、运动学公式、平抛运动的分运动公式列式求解,较难.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

17.下列说法中正确的是(  )
A.位移是矢量,位移的方向即质点运动的方向
B.不论物体的体积多大,都有可能被看成质点
C.只有低速运动的物体才可看成质点,高速运动的物体不可看成质点
D.物体通过的路程不等,但位移可能相同

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

18.某同学在“探究小车速度随时间变化的规律”的实验中,所用交流电的周期为T=0.02s.打点计时器记录了被小车拖动的纸带的运动情况,在纸带上确定出A、B、C、D、E、F、G共7个计数点.其相邻点间的距离(可依次用字母x1、x2、x3、x4、x5、x6表示)如图1所示,每两个相邻的计数点之间还有4个打印点未画出.

(1)试根据纸带上各个计数点间的距离,计算出打下B、F两个点时小车的瞬时速度,并将这两个速度值填入下表(要求保留2位有效数字).
速度vBvCvDvEvF
数值(m/s)0.500.610.73
(2)将B、C、D、E、F各个时刻的瞬时速度标在图2直角坐标系中,并画出小车的瞬时速度随时间变化的关系图线.
(3)可由所画v-t图象求出小车加速度为1.18m/s2(计算结果要求:保留小数点后面二位数字).
(4)本题亦可不利用v-t图象求小车加速度,请写出计算小车加速度的表达式:a=$\frac{{x}_{4}+{x}_{5}+{x}_{6}-{x}_{3}-{x}_{2}-{x}_{1}}{9{T}^{2}}$(用字母x1、x2、x3、x4、x5、x6和T表示).

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

15.一根原来处于原长的轻弹簧波拉长后的弹力F与其长度x的关系如图所示,则此弹簧的劲度系数为(  )
A.2N/mB.200N/mC.40N/mD.50N/m

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

6.一盏电灯功率为100W,假设它发出的光向四周均匀辐射,光的平均波长λ=6.0×10-7m,在距电灯10m远处,以电灯为球心的球面上,1m2的面积每秒钟通过的光子数约是(普朗克恒量h=6.63×10-34J•s)(  )
A.2×1017B.1×1016C.2×1015D.7×1023

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

16.通过理论分析可得出弹簧的弹性势能公式Ep=$\frac{1}{2}$kx2(式中k为弹簧的劲度系数,x为弹簧长度的变化量).为验证这一结论,A、B两位同学设计了以下的实验:
①两位同学首先都进行了如图甲所示的实验:将一根轻质弹簧竖直挂起,在弹簧的另一端挂上一个已知质量为m的小铁球,稳定后测得弹簧伸长d.
②A同学完成步骤①后,接着进行了如图乙所示的实验:将这根弹簧竖直地固定在水平桌面上,并把小铁球放在弹簧上,然后竖直地套上一根带有插销孔的长透明塑料管,利用插销压缩弹簧.拔掉插销时,弹簧对小球做功,使小球弹起,测得弹簧的压缩量x和小铁球上升的最大高度H.
③B同学完成步骤①后,接着进行了如图丙所示的实验:将这根弹簧放在水平桌面上,一端固定在竖直墙上,另一端被小铁球压缩,测得压缩量为x,释放弹簧后,小铁球从高为h的桌面上水平抛出,抛出的水平距离为L.

(1)A、B两位同学进行图甲所示的实验目的是为了确定什么物理量?请用m、d、g表示所求的物理量弹簧的劲度系数k,k=$\frac{mg}{d}$.
(2)如果Ep=$\frac{1}{2}$kx2成立,
A同学测出的物理量x与d、H的关系式是:x=$\sqrt{2dH}$
B同学测出的物理量x与d、h、L的关系式是:x=L$\sqrt{\frac{d}{2h}}$.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

3.下列叙述中正确的是(  )
A.物体的内能仅与物体的温度有关
B.物体的温度越高,物体中分子无规则运动越剧烈
C.两个系统处于热平衡时,它们的分子平均速度一定相等
D.晶体的物理性质都是各向异性的

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

20.如图所示,铜线圈水平固定在铁架台上,铜线圈的两端连接在电流传感器上,传感器与数据采集器相连,采集的数据可通过计算机处理,从而得到铜线圈中的电流随时间变化的图线.利用该装置探究条形磁铁从距铜线圈上端某一高度处由静止释放后,沿铜线圈轴线竖直向下穿过铜线圈的过程中产生的电磁感应现象.两次实验中分别得到了如图甲、乙所示的电流-时间图线.条形磁铁在竖直下落过程中始终保持直立姿态,且所受空气阻力可忽略不计.则下列说法中正确的是(  )
A.若两次实验条形磁铁距铜线圈上端的高度不同,其他实验条件均相同,则甲图对应实验条形磁铁距铜线圈上端的高度大于乙图对应实验条形磁铁距铜线圈上端的高度
B.若两次实验条形磁铁的磁性强弱不同,其他实验条件均相同,则甲图对应实验条形磁铁的磁性比乙图对应实验条形磁铁的磁性强
C.甲图对应实验条形磁铁穿过铜线圈的过程中损失的机械能小于乙图对应实验条形磁铁穿过铜线圈的过程中损失的机械能
D.两次实验条形磁铁穿过铜线圈的过程中所受的磁场力都是先向上后向下

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

1.质量为m=1kg的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑圆弧轨道下滑.B、C为圆弧的两端点,其连线水平.已知圆弧半径R=1.0m,圆弧对应圆心角为θ=106°,轨道最低点为O,A点距水平面的高度h=0.8m.小物块离开C点后恰能无碰撞的沿固定斜面向上运动,0.8s后经过D点,物块与斜面间的滑动摩擦因数为μ=0.33(g=10m/s2,sin37°=0.6,cos37°=0.8)试求:

(1)小物块离开A点的水平初速度v1
(2)小物块经过O点时对轨道的压力;
(3)斜面上CD间的距离.

查看答案和解析>>

同步练习册答案