精英家教网 > 高中物理 > 题目详情

如图甲所示,在水平路段AB上有一质量为2×103 kg的汽车,正以10 m/s的速度向右匀速运动,汽车前方的水平路段BC较粗糙,汽车通过整个ABC路段的v-t图象如图乙所示(在t=15s处水平虚线与曲线相切),运动过程中汽车发动机的输出功率保持20kW不变,假设汽车在两个路段上受到的阻力(含地面摩擦力和空气阻力等)各自有恒定的大小.

(1)求汽车在AB路段上运动时所受的阻力Ff1
(2)求汽车刚好到达B点时的加速度a;
(3)求BC路段的长度.

(1)2000N  (2)-1 m/s2    (3) 68.75m

解析试题分析:(1)汽车在AB路段时,有F1=Ff1,P=F1v1,联立解得:Ff1=2000 N.(2分)
(2)t=15 s时汽车处于平衡态,有F2=Ff2,P=F2v2
联立解得:Ff2=4000 N.(1分)
t=5 s时汽车开始减速运动,
有Ff1-Ff2=ma,
解得a=-1 m/s2.(2分)
(3)(2分)
解得:x=68.75m
考点:本题考查牛顿第二定律、动能定理

练习册系列答案
相关习题

科目:高中物理 来源: 题型:单选题

质量为M的光滑圆槽放在光滑水平面上,一水平恒力F作用在其上促使质量为m的小球静止在圆槽上,如右图所示,则(  )

A.小球对圆槽的压力为
B.小球对圆槽的压力为
C.水平恒力F变大后,如果小球仍静止在圆槽上,小球对圆槽的压力增加
D.水平恒力F变大后,如果小球仍静止在圆槽上,小球对圆槽的压力减小

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

在一条直线上,从左向右依次固定A、B、C三个质量之比为mA:mB:mC=1:2:3的带电小球,小球所在的光滑平面是绝缘的。当只将A球释放的瞬间,它获得向左的加速度,大小为5m/s2;当只将B球释放的瞬间,它获得向右的加速度,大小为4m/s2;那么,当只将C球释放的瞬间,它获得向              的加速度,大小为               m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

(12分)如图所示,光滑水平面AB与竖直面的半圆形导轨在B点衔接,导轨半径R,一个质量为m的物块静止在A处压缩弹簧,把物块释放,在弹力的作用下获得一个向右的速度,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C点,不计空气阻力,g取,求:

(1)弹簧对物块的弹力做的功;
(2)物块从B至C克服摩擦阻力所做的功;
(3)物块离开C点后落回水平面时动能的大小。

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

如图所示,光滑绝缘的细圆管弯成半径为R的半圆形,固定在竖直面内,管口B、C的连线水平.质量为m的带正电小球从B点正上方的A点自由下落,A、B两点间距离为4R。从小球(小球直径小于细圆管直径)进入管口开始,整个空间中突然加上一个斜向左上方的匀强电场,小球所受电场力在竖直方向上的分力方向向上,大小与重力相等,结果小球从管口C处离开圆管后,又能经过A点. 设小球运动过程中电荷量没有改变,重力加速度为g,求:

(1)小球到达B点时的速度大小;
(2)小球受到的电场力大小;
(3)小球经过管口C处时对圆管壁的压力.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

(10分)如图所示,让质量m=5.0kg的摆球由图中所示位置A从静止开始下摆,摆至最低点B点时恰好绳被拉断。已知摆线长L=1.6m,悬点O与地面的距离OC=4.0m。若空气阻力不计,摆线被拉断瞬间小球的机械能无损失。(g取10 m/s2)求:

(1)摆线所能承受的最大拉力T;
(2)摆球落地时的动能。

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

足够长的平行金属导轨MN和PQ表面粗糙,与水平面间的夹角370,间距为1.0m,动摩擦因数为0.25。垂直于导轨平面向上的匀强磁场磁感应强度为4.0T,PM间电阻8.0。质量为2.0kg的金属杆ab垂直导轨放置,其他电阻不计。用恒力沿导轨平面向下拉金属杆ab,由静止开始运动,8s末杆运动刚好达到最大速度为8m/s,这8s内金属杆的位移为48m,(g=10m/s2,cos370=0.8,sin370=0.6)
求:

(1)金属杆速度为4.0m/s时的加速度大小。
(2)整个系统在8s内产生的热量。

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

(22分)质量为m的飞机模型,在水平跑道上由静止匀加速起飞,假定起飞过程中受到的平均阻力恒为飞机所受重力的k倍,发动机牵引力恒为F,离开地面起飞时的速度为v,重力加速度为g。求:

(1)飞机模型的起飞距离(离开地面前的运动距离)
(2)若飞机起飞利用电磁弹射技术,将大大缩短起飞距离。图甲为电磁弹射装置的原理简化示意图,与飞机连接的金属块(图中未画出)可以沿两根相互靠近且平行的导轨无摩擦滑动。使用前先给电容为C的大容量电容器充电,弹射飞机时,电容器释放储存电能所产生的强大电流从一根导轨流入,经过金属块,再从另一根导轨流出;导轨中的强大电流形成的磁场使金属块受磁场力而加速,从而推动飞机起飞。
①在图乙中画出电源向电容器充电过程中电容器两极板间电压u与极板上所带电荷量q的图象,在此基础上求电容器充电电压为U0时储存的电能;
②当电容器充电电压为Um时弹射上述飞机模型,在电磁弹射装置与飞机发动机同时工作的情况下,可使起飞距离缩短为x。若金属块推动飞机所做的功与电容器释放电能的比值为η,飞机发动的牵引力F及受到的平均阻力不变。求完成此次弹射后电容器剩余的电能。

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

为减少烟尘排放对空气的污染,某同学设计了一个如图所示的静电除尘器,该除尘器的上下底面是边长为L=0.20m的正方形金属板,前后面是绝缘的透明有机玻璃,左右面是高h=0.10m的通道口。使用时底面水平放置,两金属板连接到U=2000V的高压电源两极(下板接负极),于是在两金属板间产生一个匀强电场(忽略边缘效应)。均匀分布的带电烟尘颗粒以v=10m/s的水平速度从左向右通过除尘器,已知每个颗粒带电荷量q=+2.0×10-17C,质量m=1.0×10-15kg,不考虑烟尘颗粒之间的相互作用和空气阻力,并忽略烟尘颗粒所受重力。在闭合开关后:

(1)求烟尘颗粒在通道内运动时加速度的大小和方向;
(2)求除尘过程中烟尘颗粒在竖直方向所能偏转的最大距离;
(3)除尘效率是衡量除尘器性能的一个重要参数。除尘效率是指一段时间内被吸附的烟尘颗粒数量与进入除尘器烟尘颗粒总量的比值。试求在上述情况下该除尘器的除尘效率;若用该除尘器对上述比荷的颗粒进行除尘,试通过分析给出在保持除尘器通道大小不变的前提下,提高其除尘效率的方法。

查看答案和解析>>

同步练习册答案