20£®ÔÚ¡°Ì½¾¿¼ÓËÙ¶ÈÓëÎïÌåÊÜÁ¦µÄ¹Øϵ¡±»î¶¯ÖУ¬Ä³Ð¡×éÉè¼ÆÁËÈçͼ1ËùʾµÄʵÑ飮ͼÖÐÉÏÏÂÁ½²ãˮƽ¹ìµÀ±íÃæ¹â»¬£¬Á½ÍêÈ«ÏàͬµÄС³µÇ°¶ËϵÉÏϸÏߣ¬Ï¸Ïß¿ç¹ý»¬ÂÖ²¢·Ö±ð¹ÒÉÏ×°Óв»Í¬ÖÊÁ¿íÀÂëµÄÅÌ£¬Á½Ð¡³µÎ²²¿Ï¸ÏßˮƽÁ¬µ½¿ØÖÆ×°ÖÃÉÏ£¬ÊµÑéʱͨ¹ý¿ØÖÆϸÏßʹÁ½Ð¡³µÍ¬Ê±Óɾ²Ö¹¿ªÊ¼Ô˶¯£¬È»ºóͬʱֹͣ£®ÊµÑéÖУ¬
¢ÙӦʹíÀÂëºÍÅ̵Ä×ÜÖÊÁ¿Ô¶Ð¡ÓÚ£¨Ìî¡°´óÓÚ¡±»ò¡°Ð¡ÓÚ¡±£©Ð¡³µµÄÖÊÁ¿£¬Õâʱ¿ÉÈÏΪС³µÊܵ½ºÏÁ¦µÄ´óСµÈÓÚíÀÂëºÍÅ̵Ä×ÜÖØ£®
¢ÚÈô²âµÃС³µ¢ñ¡¢Ð¡³µ¢òÔÚÏàͬʱ¼äÄÚµÄλÒÆ·Ö±ðΪx1ºÍx2£¬ÔòС³µ¢ñ¡¢Ð¡³µ¢òµÄ¼ÓËÙ¶ÈÖ®±Èa1£ºa2=$\frac{{x}_{1}}{{x}_{2}}$£®

·ÖÎö ¹ìµÀ¹â»¬£¬ÎªÁËʹÉþ×ÓµÄÀ­Á¦´óСµÈÓÚС³µËùÊܵĺÏÍâÁ¦£¬ÊµÑé²Ù×÷ÖÐҪʹС³µÓ뻬ÂÖÖ®¼äµÄϸÏßÓë¹ìµÀƽÐУ®
ΪÁËʹíÀÂëÅ̺ÍíÀÂëµÄÖØÁ¦µÈÓÚС³µËùÊܵĺÏÍâÁ¦£¬ÊµÑéÓ¦¸ÃÂú×ãíÀÂëÅ̺ÍíÀÂëµÄ×ÜÖÊÁ¿Ô¶Ð¡ÓÚС³µµÄÖÊÁ¿£®
¸ù¾Ý³õËÙ¶ÈΪÁãµÄÔȱäËÙÖ±ÏßÔ˶¯Ìصã¿ÉµÃ³ö´ð°¸£®

½â´ð ½â£º£¨1£©ÉèС³µµÄÖÊÁ¿ÎªM£¬íÀÂëÅ̺ÍíÀÂëµÄÖÊÁ¿Îªm£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº
¶Ôm£ºmg-FÀ­=ma
¶ÔM£ºFÀ­=Ma
½âµÃ£ºFÀ­=$\frac{mg}{m+M}$
µ±m£¼£¼Mʱ£¬¼´µ±íÀÂëÅ̺ÍíÀÂëµÄ×ÜÖØÁ¦ÒªÔ¶Ð¡ÓÚС³µµÄÖØÁ¦£¬Éþ×ÓµÄÀ­Á¦½üËƵÈÓÚíÀÂëÅ̺ÍíÀÂëµÄ×ÜÖØÁ¦£®
£¨2£©ÔÚ³õËÙ¶ÈΪÁãµÄÔȱäËÙÖ±ÏßÔ˶¯ÖÐÓÐx=$\frac{1}{2}$at2£¬ÈôÔ˶¯Ê±¼äÏàµÈ£¬ÔòλÒÆÓë¼ÓËٶȳÉÕý±È£®
С³µ1¡¢2µÄ¼ÓËÙ¶ÈÖ®±Èa1£ºa2=$\frac{{x}_{1}}{{x}_{2}}$£¬
¹Ê´ð°¸Îª£º¢ÙСÓÚ£»¢Ú$\frac{{x}_{1}}{{x}_{2}}$

µãÆÀ ±¾ÊµÑéÔÚÔ­À´µÄ»ù´¡ÉÏÓÐËù´´Ð£¬¸ù¾ÝËùѧÎïÀí֪ʶºÍʵÑé×°ÖõÄÌصãÃ÷ȷʵÑéÔ­ÀíÊǽâ´ð¸ÃʵÑéµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÓÃÂÝÐý²â΢Æ÷²â½ðÊôË¿µÄÖ±¾¶ºÍÓÃÓα꿨³ß²â½ðÊôË¿³¤¶ÈÈçͼËùʾ£¬ÔòÂÝÐý²â΢Æ÷µÄ¶ÁÊýΪ3.935 mm£¬Óα꿨³ßµÄ¶ÁÊýΪ91.60mm £¨ÓαêΪ20·Ö¶È£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ðí¶àÎïÀíѧ¼ÒµÄ¿ÆѧÑо¿¶¼¶ÔÎïÀíѧµÄ·¢Õ¹×ö³öÁ˹±Ï×£¬´Ù½øÁËÈËÀàÎÄÃ÷£®ÒÔÏÂÃèÊöÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÑÇÀïÊ¿¶àµÂͨ¹ýÑо¿µÃ³ö£ºÁ¦ÊǸıäÎïÌåÔ˶¯×´Ì¬µÄÔ­Òò
B£®Ù¤ÀûÂÔ´´Á¢Á˶ÔÎïÀíÏÖÏó½øÐÐʵÑéÑо¿£¬²¢°ÑʵÑéµÄ·½·¨ÓëÊýѧ·½·¨¡¢Âß¼­ÂÛÖ¤Ïà½áºÏµÄ¿ÆѧÑо¿·½·¨
C£®µÑ¿¨¶û°ÑÇ°È˵ÄÑо¿³É¹û×ܽá³É¶¯Á¦Ñ§µÄÒ»Ìõ»ù±¾¶¨ÂÉ--¹ßÐÔ¶¨ÂÉ
D£®Å£¶ÙÓÿÆѧÍÆÀíÂÛÖ¤ÁËÖØÎïÌåºÍÇáÎïÌåÏÂÂäÒ»Ñù¿ì

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®µçºÉ´¦Óڴų¡ÖÐÒ»¶¨Êܵ½ÂåÂ××ÈÁ¦
B£®µçºÉ´¦Ôڵ糡ÖÐÒ»¶¨Êܵ½¾²µçÁ¦µÄ×÷ÓÃ
C£®Ä³Ô˶¯µçºÉÔڴų¡ÖÐÊܵ½µÄÂåÂ××ÈÁ¦·½ÏòÓë¸Ã´¦µÄ´Å¸ÐӦǿ¶È·½ÏòÏàͬ
D£®Ä³Ô˶¯µçºÉÔڵ糡ÖÐÊܵ½µÄ¾²µçÁ¦·½ÏòÓë¸Ã´¦µÄµç³¡Ç¿¶È·½ÏòÒ»¶¨Ïàͬ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼËùʾ£¬Á½Æ½ÐеĹ⻬½ðÊôµ¼¹ì¼äµÄ¾àÀëL=0.40m£¬½ðÊôµ¼¹ìËùÔÚµÄƽÃæÓëˮƽÃæ¼Ð½Ç¦È=30¡ã£¬ÔÚµ¼¹ìËùÔÚƽÃæÄÚ£¬Óз½Ïò´¹Ö±ÓÚµ¼¹ìƽÃæÏòÉϵÄÔÈÇ¿´Å³¡£®½ðÊôµ¼¹ìµÄÒ»¶Ë½ÓÓе綯ÊÆE=4.0V¡¢ÄÚ×èr=0.50¦¸µÄÖ±Á÷µçÔ´£®ÏÖ°ÑÒ»¸öÖÊÁ¿m=0.4kgµÄµ¼Ìå°ôab·ÅÔÚ½ðÊôµ¼¹ìÉÏ£¬µ¼Ìå°ôÇ¡ºÃ¾²Ö¹£®µ¼Ìå°ôÓë½ðÊôµ¼¹ì´¹Ö±ÇÒ½Ó´¥Á¼ºÃ£¬µ¼Ìå°ôÓë½ðÊôµ¼¹ì½Ó´¥µÄÁ½µã¼äµÄµç×èR0=1.5¦¸£¬½ðÊôµ¼¹ìµÄÆäËüµç×è²»¼Æ£¬gÈ¡10m/s2£®ÊÔÇó£º
£¨1£©Í¨¹ýµ¼Ìå°ôµÄµçÁ÷´óС
£¨2£©ÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶È´óС
£¨3£©Èô´Å³¡Í»È»·´Ïò£¬Ôò´Ë˲¼äµ¼Ìå°ôµÄ¼ÓËٶȶà´ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

5£®ÍòÓÐÒýÁ¦ºÍ¿âÂØÁ¦¶¼ÓëÎïÌåÖ®¼äµÄ¾àÀëƽ·½³É·´±È£¬Òò´ËÒýÁ¦³¡ºÍµç³¡Ö®¼äÓÐÐí¶àÏàËƵÄÐÔÖÊ£¬ÔÚ´¦ÀíÓйØÎÊÌâʱ¿ÉÒÔ½«ËüÃǽøÐÐÀà±È£®ÀýÈçµç³¡Öз´Ó³¸÷µãµç³¡Ç¿ÈõµÄÎïÀíÁ¿Êǵ糡ǿ¶È£¬Æ䶨ÒåʽΪE=$\frac{F}{q}$£®ÔÚÒýÁ¦³¡ÖпÉÒÔÓÐÒ»¸öÀàËƵÄÎïÀíÁ¿ÓÃÀ´·´Ó³¸÷µãÒýÁ¦³¡µÄÇ¿Èõ£®ÉèµØÇòÖÊÁ¿ÎªM£¬°ë¾¶ÎªR£¬µØÇò±íÃæ´¦ÖØÁ¦¼ÓËÙ¶ÈΪg£¬ÒýÁ¦³£Á¿ÎªG£®Èç¹ûÒ»¸öÖÊÁ¿ÎªmµÄÎïÌåλÓÚ¾àµØÃæ2R´¦µÄijµã£¬ÔòÏÂÁи÷ʽÄÜ·´Ó³¸ÃµãÒýÁ¦³¡Ç¿ÈõµÄÊÇ£¨¡¡¡¡£©
A£®G $\frac{M}{£¨3R£©^{2}}$B£®G $\frac{M}{£¨2R£©^{2}}$C£®$\frac{g}{4}$D£®$\frac{g}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¡°°âÊÖÍó¡±ÊÇÖÐѧÉú¿ÎÓà·Ç³£Ï²°®µÄÒ»ÏîÓÎÏ·£®¼×¡¢ÒÒÁ½Í¬Ñ§½øÐС°°âÊÖÍó¡±ÓÎÏ·£®¹ØÓÚËûÃǵÄÊÖÖ®¼äµÄÁ¦£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¼×°âÓ®ÁËÒÒ£¬ÊÇÒòΪ¼×ÊÖ¶ÔÒÒÊÖµÄ×÷ÓÃÁ¦´óÓÚÒÒÊÖ¶Ô¼×ÊÖµÄ×÷ÓÃÁ¦
B£®Ö»Óе±¼×ÒÒ½©³Ö²»·Öʤ¸ºÊ±£¬¼×ÊÖ¶ÔÒÒÊÖµÄ×÷ÓÃÁ¦²ÅµÈÓÚÒÒÊÖ¶Ô¼×ÊÖµÄ×÷ÓÃÁ¦
C£®¼×¡¢ÒÒ±ÈÈü¶Ô¿¹Ê±£¬ÎÞ·¨±È½Ï¼×ÊÖÓëÒÒÊÖÖ®¼äÏ໥×÷ÓÃÁ¦µÄ´óС¹Øϵ
D£®ÎÞÂÛ˭ʤ˭¸º£¬¼×ÊÖ¶ÔÒÒÊÖµÄ×÷ÓÃÁ¦´óСµÈÓÚÒÒÊÖ¶Ô¼×ÊÖµÄ×÷ÓÃÁ¦´óС

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈçͼËùʾ£¬³µÑØˮƽµØÃæ×öÖ±ÏßÔ˶¯£®Ò»Ð¡ÇòÐü¹ÒÓÚ³µ¶¥£¬ÐüÏßÓëÊúÖ±·½Ïò¼Ð½ÇΪ¦È£¬·ÅÔÚ³µÏáºó±ÚÉϵÄÎïÌåA£¬ÖÊÁ¿Îªm£¬Ç¡Óë³µÏáÏà¶Ô¾²Ö¹£®ÒÑÖªÎïÌåAÓë³µÏá¼ä¶¯Ä¦²ÁÒòÊýΪ¦Ì£¬×î´ó¾²Ä¦²ÁÁ¦µÈÓÚ»¬¶¯Ä¦²ÁÁ¦£®ÔòÏÂÁйØϵʽÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®tan¦È=¦ÌB£®tan¦È=$\frac{1}{¦Ì}$C£®tan¦È=$\frac{¦Ì}{g}$D£®tan¦È=$\frac{g}{¦Ì}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈçͼËùʾΪijСÐÍË®µçÕ¾µÄµçÄÜÊäËÍʾÒâͼ£¬AΪÉýѹ±äѹÆ÷£¬ÆäÊäÈ빦ÂÊΪP1£¬Êä³ö¹¦ÂÊΪP2£¬Êä³öµçѹΪU2£»BΪ½µÑ¹±äѹÆ÷£¬ÆäÊäÈ빦ÂÊΪP3£¬ÊäÈëµçѹΪU3£®A¡¢B¾ùΪÀíÏë±äѹÆ÷£¬ÊäµçµçÁ÷ΪI£¬ÊäµçÏßµÄ×ܵç×èΪr£¬ÔòÏÂÁйØϵÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®U2=U3B£®U2=U3+IrC£®P1£¾P2D£®P2=P3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸