·ÖÎö £¨1£©ÀûÓÃÖð²î·¨¡÷x=aT2¿ÉÒÔÇó³öÎïÌåµÄ¼ÓËٶȴóС£»
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÓÐ=ma£¬ÓÉ´Ë¿ÉÖªÐèÒª²âÁ¿µÄÎïÀíÁ¿£®
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵıí´ïʽ£¬¿ÉÒÔÇó³öĦ²ÁϵÊýµÄ±í´ïʽ£®
½â´ð ½â£º£¨1£©Ã¿ÏàÁÚÁ½¼ÆÊýµã¼ä»¹ÓÐ4¸ö´òµã£¬ËµÃ÷ÏàÁڵļÆÊýµãʱ¼ä¼ä¸ô£ºT=0.1s£¬
¸ù¾ÝÖð²î·¨ÓУºa=$\frac{£¨{x}_{6}+{x}_{5}+{x}_{4}£©-£¨{x}_{3}+{x}_{2}+{x}_{1}£©}{9{T}^{2}}$=0.496m/s2£»
£¨2£©Òª²âÁ¿¶¯Ä¦²ÁÒòÊý£¬ÓÉf=¦ÌFN ¿ÉÖªÒªÇó¦Ì£¬ÐèÒªÖªµÀĦ²ÁÁ¦ºÍѹÁ¦µÄ´óС£¬Ñ¹Á¦¾ÍÊÇ»¬¿éµÄÖØÁ¦£¬ËùÒÔÐèÒªÖªµÀ»¬¿éµÄÖÊÁ¿£¬Ä¦²ÁÁ¦Òª¸ù¾ÝÌú¿éµÄÔ˶¯À´ÇóµÃ£¬»¬¿é×öµÄÊÇÔȼÓËÙÔ˶¯£¬À»¬¿éÔ˶¯µÄÊÇÍÐÅ̺ÍíÀÂ룬ËùÒÔÒ²ÒªÖªµÀÍÐÅ̺ÍíÀÂëµÄÖÊÁ¿£¬¹ÊABE´íÎó£¬CDÕýÈ·£®
¹ÊÑ¡£ºCD£®
ÒÔÕû¸öϵͳΪÑо¿¶ÔÏ󣬸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÓУº
m3g-f=£¨m2+m3£©a¡¢Ù
f=m2g¦Ì¡¢Ú
ÁªÁ¢¢Ù¢Ú½âµÃ£º¦Ì=$\frac{{m}_{3}g-£¨{m}_{2}+{m}_{3}£©a}{{m}_{2}g}$£®
¹Ê´ð°¸Îª£º£¨1£©0.496£»£¨2£©CD£¬$\frac{{m}_{3}g-£¨{m}_{2}+{m}_{3}£©a}{{m}_{2}g}$£®
µãÆÀ ½â¾öʵÑéÎÊÌâÊ×ÏÈÒªÕÆÎÕ¸ÃʵÑéÔÀí£¬Á˽âʵÑéµÄ²Ù×÷²½ÖèºÍÊý¾Ý´¦ÀíÒÔ¼°×¢ÒâÊÂÏͬʱҪÊìÁ·Ó¦ÓÃËùѧ»ù±¾¹æÂɽâ¾öʵÑéÎÊÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | PÖʵãÔ˶¯¹ì¼£ÊÇÇúÏß | |
B£® | Áãʱ¿ÌPÖʵãµÄ¼ÓËÙ¶ÈΪÁã | |
C£® | ÔÚ0-t1ʱ¼äÄÚ£¬PÖʵãµÄλÒÆСÓÚQÖʵãµÄλÒÆ | |
D£® | ÔÚ0-t1ʱ¿ÌÄÚ£¬PÖʵãµÄƽ¾ùËٶȴóÓÚQÖʵãµÄƽ¾ùËÙ¶È |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 4¡Á10-8 | B£® | 2.5¡Á10-5 | C£® | 9¡Á10-4 | D£® | 4¡Á10-2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{{a}_{1}}{{a}_{2}}$=$\frac{£¨R+{h}_{1}£©^{2}}{£¨R+{h}_{2}£©^{2}}$£¬$\frac{{T}_{1}}{{T}_{2}}$=£¨$\frac{R+{h}_{1}}{R+{h}_{2}}$£©${\;}^{\frac{3}{2}}$ | |
B£® | $\frac{{a}_{1}}{{a}_{2}}$=$\frac{£¨R+{h}_{2}£©^{2}}{£¨R+{h}_{1}£©^{2}}$£¬$\frac{{T}_{1}}{{T}_{2}}$=£¨$\frac{R+{h}_{1}}{R+{h}_{2}}$£©${\;}^{\frac{3}{2}}$ | |
C£® | $\frac{{a}_{1}}{{a}_{2}}$=$\frac{£¨R+{h}_{1}£©^{2}}{£¨R+{h}_{2}£©^{2}}$£¬$\frac{{T}_{1}}{{T}_{2}}$=£¨$\frac{R+{h}_{1}}{R+{h}_{2}}$£©${\;}^{\frac{2}{3}}$ | |
D£® | $\frac{{a}_{1}}{{a}_{2}}$=$\frac{£¨R+{h}_{2}£©^{2}}{£¨R+{h}_{1}£©^{2}}$£¬$\frac{{T}_{1}}{{T}_{2}}$=£¨$\frac{R+{h}_{2}}{R+{h}_{1}}$£©${\;}^{\frac{2}{3}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com