精英家教网 > 高中物理 > 题目详情
14.如图所示,挡板C垂直固定在倾角θ=30°的光滑长斜面上,质量分别为m、2m的两物块A、B用一劲度系数为k的轻弹簧相连,系统处于静止状态,弹簧压缩长度为L.现用方向沿斜面向上、大小为mg(g为重力加速度)的恒力F拉A,若A向上运动一段距离x后撤去F,当A运动到最高处时B刚好不离开C,则下列说法正确的是(  )
A.A刚要沿斜面向上运动时的加速度大小为g
B.A上升的最大竖直高度为3L
C.拉力F的功率随时间均匀增加
D.A向上运动的一段距离x=$\frac{9}{4}$L

分析 根据牛顿第二定律求A刚要沿斜面向上运动时的加速度.由胡克定律求出A运动到最高处时弹簧伸长的长度,即可得到A上升的最大竖直高度.通过分析A的速度变化,分析F的功率如何变化

解答 解:A、A原来静止,合力为零,当加上恒力F时,此瞬间A的合力等于F,则A刚要沿斜面向上运动时的加速度大小为 a=$\frac{F}{m}$=g,故A正确.
B、当A运动到最高处时B刚好不离开C,此时弹簧伸长的长度为 x2=$\frac{2mgsinθ}{k}$
开始时弹簧压缩的长度 x1=L,则有 mgsinθ=kx1,得 k=$\frac{mg}{2L}$,x2=2L
所以A上升的最大竖直高度为 h=(L+x2)sinθ=$\frac{3}{2}$L.故B错误.
C、A向上运动的加速度是变化的,因此其速度v并不是随时间均匀增加,拉力的功率为P=Fv,因此拉力功率并不是随时间均匀增加,故C错误.
D、开始弹簧的弹性势能为:EP1=$\frac{1}{2}$kL2=$\frac{1}{4}$mgL
A上升到最高时,弹簧的弹性势能为:EP2=$\frac{1}{2}$kx22=mgL
对系统根据能量守恒定律有:Fx+EP1-EP2-mgh=0
代入F=mg解得:x=$\frac{9}{4}$L,故D正确;
故选:AD

点评 本题关键要多次对物体A和B受力分析,求出弹簧的弹力,最后再根据牛顿第二定律求解加速度.本题还要知道弹簧的弹性势能计算公式EP=$\frac{1}{2}$kx2,式中x是弹簧的形变量

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

4.如图所示,A、B是两块竖直放置的平行金属板,相距为2l,分别带有等量的负、正电荷,在两板间形成电场强度大小为E的匀强电场,A板上有一小孔(它的存在对两板间匀强电场分布的影响可忽略不计),孔的下沿右侧有一条与板垂直的水平光滑绝缘轨道,一个质量为m,电荷量为q(q>0)的小球(可视为质点),在外力作用下静止在轨道的中点P处.孔的下沿左侧也有一与板垂直的水平光滑绝缘轨道,轨道上距A板l处有一固定档板,长为l的轻弹簧左端固定在挡板上,右端固定一块轻小的绝缘材料制成的薄板Q.撤去外力释放带电小球,它将在电场力作用下由静止开始向左运动,穿过小孔(不与金属板A接触)后与薄板Q一起压缩弹簧,由于薄板Q及弹簧的质量都可以忽略不计,可认为小球与Q接触过程中不损失机械能.小球从接触 Q开始,经历时间T0第一次把弹簧压缩至最短,然后又被弹簧弹回.由于薄板Q的绝缘性能有所欠缺,使得小球每次离开弹簧的瞬间,小球的电荷量都损失一部分,而变成刚与弹簧接触时小球电荷量的$\frac{1}{k}$(k>1).求:
(1)小球第一次接触Q时的速度大小;
(2)假设小球第n次弹回两板间后向右运动的最远处没有到达B板,试导出小球从第n次接触Q到本次向右运动至最远处的时间T0的表达式;
(3)假设小球经若干次回弹后向右运动的最远点恰好能到达B板,求小球从开始释放至刚好到达B点经历的时间.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

5.如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A.其中,A→B和C→D为等温过程,B→C和D→A为绝热过程.该循环过程中,下列说法正确的是(  )
A.A→B过程中,气体对外界做功,吸热
B.B→C过程中,气体分子的平均动能增加
C.C→D过程中,单位时间内碰撞单位面积器壁的分子数增多
D.D→A过程中,气体分子的速率分布曲线发生变化
E.该循环过程中,气体放热

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

2.如图所示,质量mA=2kg的铁块A叠放在mB=0.5kg的薄木板B下端,一起静止在足够长的斜面上,某机器通过斜面顶端的光滑定滑轮,牵引平行斜面的轻绳A做匀加速运动,A离开B后,B在减速过程中开始2s的位移是最后2s内位移的两倍,且第1s内的位移为20m,已知铁块与薄木板间的动摩擦因数μ=0.6,木板长l=2.25m,斜面倾角a=37°.g取10m/s2,sin37°=0.6,cos37°=0.8.求:
(1)木板B与斜面间 的动摩擦因数(经过保留两位有效数字);
(2)轻绳的拉力大小.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

9.如图所示,穿在水平直杆上质量为m的小球开始时静止.小球与杆间的动摩擦因数为μ.现对小球施加沿杆方向施加恒力F0=2μmg,垂直于杆方向施加竖直向上的力F,且F的大小始终与小球的速度成正比,即F=kv(图中未标出).已知小球运动过程中未从杆上脱落,则(  )
A.小球先做加速度減小的加速运动,后做加速度增大的减速运动直到静止
B.小球先做加速度增大的加速运动,后做加速度减小的减速运动,直到最后做匀速运动
C.小球的最大加速度为2μg
D.恒力F0的最大功率为PN=$\frac{3μmg}{k}$

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

19.某同学欲自制一台电子秤,通过查阅资料发现电子秤的主要部件为一个压敏电阻(阻值随压力的增大而变小).请你用下列器材帮助该同学完成设计:
A.电流表A1:量程0~0.6A,内阻0.125Ω;
B.电流表A2:量程0~3.0A,内阻0.025Ω;
C.滑动变阻器R1:最大阻值100Ω;
D.滑动变阻器R2:最大阻值10Ω;
E.直流电源:电动势约4.5V,内阻很小;
F.开关、导线及砝码若干.
(1)应该选用的电流表是A,滑动变阻器是D.(填写器材前字母的代号)
(2)请根据所选器材在图甲方框中设计一个电路,要求压敏电阻两端电压调节范围尽可能大.
(3)具体的测量步骤如下:
②保持滑片位置不动,在压敏电阻上放一砝码,读出此时电流表的示数;
③不断增加砝码个数,分别读出电流表对应的电流值;
④建立I-m坐标系,根据记录数据进行描点,得到该压敏电阻的m-I图线如图乙所示;若用该电子秤测量物体的质量时,电流表的示数为0.45A,则该物体的质量为2.5kg(结果保留两位有效数字).

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

6.图甲是线圈绕垂直于磁场的轴在匀强磁场中匀速转动时所产生的正弦交变电流图象,把该交流电压加在图乙中变压器的A、B两端.已知理想变压器原线圈Ⅰ和副线圈Ⅱ的匝数比为5:1,交流电流表和交流电压表均为理想电表,电阻R=1Ω,其他各处电阻不计,以下说法中正确的是(  )
A.在t=0.1 s、0.5 s时,穿过线圈的磁通量最大
B.电流表的示数为0.40 A
C.线圈转动的角速度为10π rad/s
D.电压表的示数为$\sqrt{2}$ V

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

3.在一均匀介质中,质点A.B平衡位置间的距离为6m,波源O位于两质点之间的某一位置上,质点A位于波源的左侧,质点B位于波源的右侧.波源O振动引起两列向A、B传播的机械波,如图所示为两质点的振动图象,且t=0时刻波源处于平衡位置沿y轴正方向运动,则波传播速度的最大值为(  )
A.9m/sB.12m/sC.15m/sD.18 m/s

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

11.如图所示,质量为M=2kg的长木板静止在光滑水平面上,现有一质量m=1kg的小滑块(可视为质点)以v0=3.6m/s的初速度从左端沿木板上表面冲上木板,带动木板一起向前滑动.已知滑块与木板间的动摩擦因数μ=0.1,重力加速度g取10m/s2.求:
(1)滑块在木板上滑动过程中,长木板受到的摩擦力大小f和方向;
(2)滑块在木板上滑动过程中,滑块相对于地面的加速度大小;
(3)若长木板足够长,滑块与长木板达到的共同速度v.

查看答案和解析>>

同步练习册答案