精英家教网 > 高中物理 > 题目详情
如图所示,一弹簧在倾角为θ的斜面上,下端固定,上端连接质量为m的滑块A,用一锁定K将A锁定在斜面上,并使弹簧刚好处于原长.在A点之下段斜面光滑,在A点之上段斜面粗糙.现将质量也为m的物块B从距离A为L的P点以某一初速度滑下,当B刚要与A相碰瞬间锁定K立即自动解开,使B与A相碰(相碰时间极短),并使A、B以共同的速度压缩弹簧(A、B互不粘连),然后B又刚好被反弹回P点而速度减为零.B物块与粗糙段摩擦因数为μ.求B物原来的初速度大小.

【答案】分析:B下滑过程中有重力及摩擦力做功,由动能定理可得出表达式;而在AB碰撞中动量守恒,由动量守恒定律可得出表达式;再对AB分离后对B分析,由动能定理可得出表达式,联立可解.
解答:解:设B物块的初为V,B与A碰前瞬间的速度为V1,B与A碰后的瞬间的速度为V2,对B在碰前过程有:
mgLsinθ-μmgLcosθ=mV12-mV22
A、B碰撞动量守恒:m V1=2m V2
A、B反弹后在弹簧的原长分离,对B分离后有:mgLsinθ+μmgLcosθ=mV22
由上三式可解得:V1=
答:B物体原来的初速度为
点评:对于动能定理的应用题目,一定要注意分析过程,对不同的过程分别应用动能定理或动量守恒列式,注意各过程之间的联系,联立方程可解.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

精英家教网如图所示,AB为倾龟θ=37°的绝缘直轨道,轨道的AC部分光滑,CB部分粗糙.BP为半径R=1.0m的绝缘竖直光滑圆弧形轨道,O为圆心,圆心角∠BOP=143°、两轨道相切于B点,P、O两点在同一竖直线上.轻弹簧下端固定在A点上端自由伸展到C点,整个装置处在竖直向下的足够大的匀强电场中,场强E=1.0×106N/C.现有一质量m=2.0kg、带负电且电量大小恒为q=1.0×10-5C的物块(视为质点),靠在弹簧上端(不拴接),现用外力推动物块,使弹簧缓慢压缩到D点,然后迅速撤去外力,物块被反弹到C点时的速度VC=10m/So物块与轨道CB间的动摩擦因素μ=0.50,C、D间的距离L=1.Om5物块第一次经过B点后恰能到P点.(sin37°=0.6,cos37°=0.8,g 取 10m/s2) 
(1)求物块从D点运动到C点的过程中,弹簧对物块所做的功W
(2)求B、C两点间的距离X;
(3)若在P处安装一个竖直弹性挡板,物块与挡板相碰后沿原路返回(不计碰撞时的能量损失),再次挤压弹簧后又被反弹上去,试判断物块是否会脱离轨道?(要写出判断依据)

查看答案和解析>>

科目:高中物理 来源:2012年浙江省温州市高考物理适应性训练(二)(解析版) 题型:解答题

如图所示,AB为倾龟θ=37°的绝缘直轨道,轨道的AC部分光滑,CB部分粗糙.BP为半径R=1.0m的绝缘竖直光滑圆弧形轨道,O为圆心,圆心角∠BOP=143°、两轨道相切于B点,P、O两点在同一竖直线上.轻弹簧下端固定在A点上端自由伸展到C点,整个装置处在竖直向下的足够大的匀强电场中,场强E=1.0×106N/C.现有一质量m=2.0kg、带负电且电量大小恒为q=1.0×10-5C的物块(视为质点),靠在弹簧上端(不拴接),现用外力推动物块,使弹簧缓慢压缩到D点,然后迅速撤去外力,物块被反弹到C点时的速度VC=10m/So物块与轨道CB间的动摩擦因素μ=0.50,C、D间的距离L=1.Om5物块第一次经过B点后恰能到P点.(sin37°=0.6,cos37°=0.8,g 取 10m/s2) 
(1)求物块从D点运动到C点的过程中,弹簧对物块所做的功W
(2)求B、C两点间的距离X;
(3)若在P处安装一个竖直弹性挡板,物块与挡板相碰后沿原路返回(不计碰撞时的能量损失),再次挤压弹簧后又被反弹上去,试判断物块是否会脱离轨道?(要写出判断依据)

查看答案和解析>>

同步练习册答案