精英家教网 > 高中物理 > 题目详情
12.如图所示,在xOy平面直角坐标系中,第一象限内存在着磁感应强度为B,方向垂直纸面向里的匀强磁场,第二象限内存在沿y轴负方向的匀强电场.从x轴上坐标为(L,0)的点M,沿xOy平面向第一象限内同时发射若干个质量均为m、电荷量均为+q的同种粒子.粒子速度大小不等,方向与x轴正方向成45°~135°.粒子经过磁场偏转后都垂直射到y轴上,然后进入第二象限,粒子重力不计.求:
(1)y轴上有粒子穿过的区间长度;
(2)最先与最后穿过y轴的粒子的时间间隔;
(3)若发射速度最小的粒子再次回到x轴时的速度大小恰好等于发射速度最大的粒子的发射速度,匀强电场的场强多大?

分析 (1)粒子在磁场中做匀速圆周运动,确定圆心,定出半径,画出运动轨迹,由几何知识求出轨迹半径,并得到y轴上有粒子穿过的区间长度.
(2)根据轨迹的圆心角求出粒子在磁场中运动的时间,即可求得时间间隔.
(3)粒子进入电场做类平抛运动,由动能定理和半径公式结合求解电场强度.

解答 解:(1)画出速度最大的粒子运动轨迹,分别如图中蓝线和红线所示,设它们的半径分别为r1和r2
根据几何知识得:r1=r2=$\sqrt{2}$L
粒子射到y轴上离O最远的点为D,则OD=r2+L=($\sqrt{2}$+1)L
粒子射到y轴上离O最近的点为C,则OC=r1-L=($\sqrt{2}$-1)L
故y轴上有粒子穿过的区间长度为 S=OD-OC=2L.
(2)粒子在磁场中运动的周期为 T=$\frac{2πm}{qB}$
从C射到电场的粒子最先穿过y轴,它在磁场中运动时间为 t1=$\frac{45°}{360°}$T
从D射到电场的粒子最后穿过y轴,它在磁场中运动时间为 t2=$\frac{135°}{360°}$T
故 t2-t1=$\frac{90°}{360°}$T=$\frac{πm}{2qB}$
(3)在速度最小的粒子在电场中做类平抛运动,轨迹如绿线所示,可得其轨迹半径为r3=L
根据r=$\frac{mv}{qB}$,得最大速度为 v1=$\frac{\sqrt{2}qBL}{m}$
最小速度为 v3=$\frac{qBL}{m}$
据题:该粒子再次回到x轴时的速度大小恰好等于发射速度最大的粒子的发射速度,由动能定理有:
 qE•L=$\frac{1}{2}m{v}_{1}^{2}$-$\frac{1}{2}m{v}_{3}^{2}$
解得 E=$\frac{q{B}^{2}L}{2m}$
答:
(1)y轴上有粒子穿过的区间长度为2L;
(2)最先与最后穿过y轴的粒子的时间间隔为$\frac{πm}{2qB}$;
(3)若发射速度最小的粒子再次回到x轴时的速度大小恰好等于发射速度最大的粒子的发射速度,匀强电场的场强为$\frac{q{B}^{2}L}{2m}$.

点评 本题的解题关键是通过定圆心,找半径,画出带电粒子的运动轨迹,并运用几何知识求解相关的长度.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

2.有关分子动理论和物体的内能,下列叙述正确的是(  )
A.物体吸热,内能一定增加
B.布朗运动指的是分子的热运动
C.气体的压强是由于大量分子频繁撞击器壁产生的
D.根据油膜实验可知分子在永不停息地做无规则运动

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

3.下列说法正确的是(  )
A.气体分子的体积是指每个气体分子平均所占有的空间体积
B.晶体外形规则是晶体内部微粒有规则排列的结果
C.在完全失重的情况下,气体对容器壁的压强为零
D.空气中所含水蒸气的压强与同一温度下水的饱和汽压之比称为空气的相对湿度

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

20.(1)某探究小组的同学在实验室用如图实验装置“探究加速与力、质量的关系”时,先在长木板右端适当位置垫一块薄木板,这样做的目的是平衡摩擦力.实验中由打点计时器得到表示小车运动过程的一条清晰纸带如下图乙所示,纸带上两相邻计数点的时间间隔为T=0.10s,其中x1=7.11cm、x2=7.70cm、x3=8.29cm、x4=8.90cm、x5=9.51cm、x6=10.10cm,则小车的加速度的大小是0.60m/s2.(结果保留两位有效数)
(2)若该探究小组还用此实验装置完成了“验证机械能守恒定律”的实验,由打点计时器得到一条清晰纸带若仍如图乙所示.已测得砝码和砝码盘的总质量为m,小车和车上砝码的总质量为M,且m远小于M,则打点计时器打下A、F两点过程中,系统机械能守恒的表达式为$mg({x}_{2}+{x}_{3}+{x}_{4}+{x}_{5}+{x}_{6})=\frac{1}{2}M{(\frac{{x}_{6}+{x}_{7}}{2T})}^{2}-\frac{1}{2}M{(\frac{{x}_{1}+{x}_{2}}{2T})}^{2}$(用符号m、M、x1、x2、x3、x4、x5、x6、x7、T表示).

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

7.关于物理学中的一些研究方法,下列说法正确的是(  )
A.探究力的平行四边形定则的实验中采用了理想模型法
B.卡文迪许测定引力常量G的数值时采用了微小量放大的方法
C.伽利略在利用理想实验探究力和运动关系时采用了等效替代法
D.法拉第利用电场线描绘电场是采用了归纳法

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

17.设嫦娥号登月飞船贴近月球表而做匀速圆周运动,测得飞船绕月运行周期为T.飞船在月球上着陆后,自动机器人在月球上做自由落体实验,将某物体由距月球表面高h处释放,经时间t后落到月球表面.已知引力常量为G,由以上数据能求出的物理量是(  )
A.月球的半径
B.月球绕地球做匀速圆周运动的向心加速度
C.月球表面的重力加速度
D.月球的质量

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

4.如图所示,直角三角形ABC区域中存在一匀强磁场,比荷相同的两个粒子(不计重力)沿AB方向射入磁场,分别从AC边上的P、Q两点射出,则(  )
A.从P点射出的粒子速度大
B.从Q点射出的粒子速度大
C.从Q点射出的粒子在磁场中运动的时间长
D.两个粒子在磁场中运动的时间一样长

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

1.在“验证机械能守恒定律”实验中,某研究小组采用了如图甲所示的实验装置.实验的主要步骤是:在一根不可伸长的细线一端系一金属小球,另一端固定于O点,记下小球静止时球心的位置A,在A处放置一个光电门,现将小球拉至球心距A高度为h 处由静止释放,记下小球通过光电门时的挡光时间△t.

(1)如图乙,用游标卡尺测得小球的直径d=1.04cm;
(2)该同学测出一组数据如下:高度h=0.21m,挡光时间△t=0.0052s,设小球质量为m=100g,g=9.8m/s2.计算小球重力势能的减小量△Ep=0.206J,动能的增加量△Ek=0.200J,得出的结论:在误差范围内,小球机械能守恒,分析误差产生的原因是克服空气阻力做功.(结果均保留三位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

2.用如图1所示装置做“探究物体的加速度跟力的关系”的实验.
实验时保持小车质量0.4kg不变,用小车和绳子之间的力传感器测出绳子对小车的拉力作为小车受到的合力,用打点计时器和小车后端拖动的纸带测出小车运动的加速度.

(1)实验时滑轮右边的绳子与长木板平行,钩码质量可以等于(选填“可以等于”或者“应该远小于”)小车的质量.
(2)图2为实验中打出的一条纸带的一部分,从比较清晰的点迹起,在纸带上标出了连续的5个计数点A、B、C、D、E,相邻两个计数点之间都有4个点迹没有标出,测出各计数点到A点之间的距离,如图2所示.已知打点计时器接在频率为50Hz的交流电源两端,用逐差法测此实验中小车运动中受到的合力F=0.40N.(结果保留两位有效数字)

查看答案和解析>>

同步练习册答案