精英家教网 > 高中物理 > 题目详情
如图所示,在倾角θ=37°的足够长的固定斜面底端有一质量m=1.0kg的物体,物体与斜面间动摩擦因数μ=0.25,现用平行斜面向上拉力F=10N将物体由静止沿斜面向上拉动,经时间t=4.0s撤去F,(sin37°=0.6,cos37°=0.8,g=10m/s2)求:
(1)撤去力F时物体的速度υ和位移x1的大小;
(2)物体从撤去外力之后沿斜面上滑的最大位移x2和所需时间t'的大小.
分析:(1)分析撤去力F前物体的受力情况,根据牛顿第二定律求出加速度,由速度公式求解撤去力F时物体的速度大小,运用位移时间公式求出位移.
(2)撤去力F后,物体先沿斜面向上做匀减速运动,后沿斜面向下做匀加速运动,由牛顿第二定律求出向上减速过程的加速度,由运动学公式求出时间和位移.从而求出沿斜面上滑的最大距离.
解答:解:(1)对物体受力分析,把重力进行正交分解:
F1=mgsin37°
FN=F2=mgcos37°
由牛顿第二定律得:F-f-F1=ma1
f=μFN=μmgcos37°
解得:a1=2m/s2
由运动学方程:υ=a1t=8m/s
x1=
1
2
a1t2=
1
2
×2×42=16m

(2)撤去外力后,受力分析,
由牛顿第二定律得:-(F1+f)=ma2
a2=-8m/s2
撤去外力之后物体做匀减速直线运动,
由运动学方程:x2=
0-V2
2a2

x2=4m
t′=
0-V
a2
=
0-8
-8
=1s

答:(1)撤去力F时物体的速度υ为8m/s,位移x1的大小为16m;
(2)物体从撤去外力之后沿斜面上滑的最大位移x2为4m,所需时间t'1s.
点评:本题是有往复的动力学问题,运用牛顿第二定律与运动学公式结合是解题的基本方法,加速度是关键量.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

(2011?安徽模拟)如图所示,在倾角θ=37°的固定斜面上放置一质量M=1kg、长度L=3m的薄平板AB.平板的上表面光滑,其下端B与斜面底端C的距离为7m.在平板的上端A处放一质量m=0.6kg的滑块,开始时使平板和滑块都静止,之后将它们无初速释放.设平板与斜面间、滑块与斜面间的动摩擦因数均为μ=0.5,求滑块与平板下端B到达斜面底端C的时间差△t.(sin37°=0.6,cos37°=0.8,g=10m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:

(2010?南昌一模)如图所示,在倾角为a的传送带上有质量均为m的三个木块1、2,3,中间均用原长为L,劲度系数为k的轻弹簧连接起来,木块与传送带间的动摩擦因数均为μ,其中木块1被与传送带平行的细线拉住,传送带按图示方向匀速运行,三个木块处于平衡状态.下列结论正确的是(  )

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,在倾角θ=37°的斜面上,固定着宽L=0.20m的平行金属导轨,在导轨上端接有电源和滑动变阻器,已知电源电动势E=6.0V,内电阻r=0.50Ω.一根质量m=10g的金属棒ab放在导轨上,与两导轨垂直并接触良好,导轨和金属棒的电阻忽略不计.整个装置处于磁感应强度B=0.50T、垂直于轨道平面向上的匀强磁场中.若金属导轨是光滑的,已知sin37°=0.6,cos37°=0.8,取g=10m/s2,求:
(1)要保持金属棒静止在导轨上,滑动变阻器接入电路的阻值是多大?
(2)金属棒静止在导轨上时,如果使匀强磁场的方向瞬间变为竖直向上,则此时导体棒的加速度是多大?

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,在倾角为θ的光滑斜劈P的斜面上有两个用轻质弹簧相连的物块A、B,C为一垂直固定在斜面上的挡板.A、B质量均为m,斜面连同挡板的质量为M,弹簧的劲度系数为k,系统静止于光滑水平面.现开始用一水平恒力F作用于P,(重力加速度为g)下列说法中正确的是(  )

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,在倾角α=37°的斜面上,一条质量不计的皮带一端固定在斜面上端,另一端绕过一质量m=3kg,中间有一圈凹槽的圆柱体,并用与斜面夹角β=37°的力F拉住,使整个装置处于静止状态.不计一切摩擦,求拉力F和斜面对圆柱体的弹力N的大小. (g=10m/s2,sin37°=0.6,cos37°=0.8)

查看答案和解析>>

同步练习册答案