分析 (1)根据平抛知识求小物块离开O点时的速度大小;
(2)小物块能击中挡板,则小物块必须能够到达O点,据动能定理求得力F作用的位移,再根据牛顿运动定律和运动学规律求得力F的作用时间;
(3)根据能击中挡板的条件求出小物块动能的表达式,再根据数学分析求动能的最小值.
解答 解:(1)小物块从O到P,做平抛运动
水平方向:Rcos37°=v0t
竖直方向:$Rsin37°=\frac{1}{2}g{t}^{2}$
可得:${v}_{0}=\frac{Rcos37°}{t}=\frac{Rcos37°}{\sqrt{\frac{2Rsin37°}{g}}}$=$\frac{4}{3}\sqrt{3}m/s$
(2)为使小物块击中档板,小物块必须能运动到O点,
由动能定理得:Fx-μmgS=△Ek=0
解得:$x=\frac{μmg}{F}S=\frac{0.5×0.5×10}{5}×5m$=2.5m
由牛顿第二定律得:F-μmg=ma
解得:$a=\frac{F}{m}-μg=\frac{5}{0.5}-0.5×10m/{s}^{2}=5m/{s}^{2}$
由运动学公式得:$x=\frac{1}{2}a{t}^{2}$
解得:t=1s
(3)设小物块击中挡板的任意点坐标为(x,y),则
x=v0t
$y=\frac{1}{2}g{t}^{2}$
由机械能守恒得:${E}_{k}=\frac{1}{2}m{v}_{0}^{2}+mgy$
又x2+y2=R
化简整理得:${E}_{k}=\frac{mg{R}^{2}}{4y}+\frac{3mgy}{4}$
由数学知识可得${E}_{kmin}=\frac{5\sqrt{3}}{2}J$
答:(1)若小物块击中档板上的P点(OP与水平方向夹角为37°,已知sin37°=0.6,cos37°=0.8)则其离开O点时的速度大小为$\frac{4}{3}\sqrt{3}m/s$;
(2)为使小物块击中档板,拉力F作用的最短时间为1s;
(3)改变拉力F的作用时间,使小物块击中挡板的不同位置.击中挡板时小物块动能的最小值为$\frac{5\sqrt{3}}{2}J$.
点评 解决本题的关键是掌握平抛运动知识及牛顿运动定律和动能定理的应用,本题综合性较高,需要掌握的知识点较多,题目较难.
科目:高中物理 来源: 题型:填空题
查看答案和解析>>
科目:高中物理 来源: 题型:填空题
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | 月球车处于失重状态 | |
B. | 月球车处于超重状态 | |
C. | 月球车不受月球的作用力 | |
D. | 着陆器为月球车提供绕月运动的向心力 |
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | $\frac{1}{μ}$($\frac{{{v}_{0}}^{2}}{2gcosθ}$+x0tanθ) | B. | $\frac{1}{μ}$($\frac{{{v}_{0}}^{2}}{2gsinθ}$+x0tanθ) | ||
C. | $\frac{2}{μ}$($\frac{{{v}_{0}}^{2}}{2gcosθ}$+x0tanθ) | D. | $\frac{1}{μ}$($\frac{{{v}_{0}}^{2}}{2gcosθ}$+x0cotθ) |
查看答案和解析>>
科目:高中物理 来源: 题型:填空题
查看答案和解析>>
科目:高中物理 来源: 题型:解答题
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | 36次 | B. | 12次 | C. | 6次 | D. | 4/3次 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com