【题目】如图所示的位移(x)-时间(t)图象和速度(v)-时间(t)图象中给出四条图线,甲、乙、丙、丁代表四辆车由同一地点向同一方向运动的情况,则下列说法正确的是
A.甲车做直线运动,乙车做曲线运动
B.0~t1时间内,甲车通过的路程大于乙车通过的路程
C.0~t2时间内,丙、丁两车在t2时刻相距最远
D.0~t2时间内,丙车的平均速度小
科目:高中物理 来源: 题型:
【题目】如图所示,两根光滑平行金属导轨(电阻不计),由半径为r的圆弧部分与无限长的水平部分组成,间距为L,水平导轨部分存在竖直向下的匀强磁场,磁感应强度大小为B,一质量为2m的金属棒cd静置于水平导轨上,电阻为2R,另一质量为m、电阻为R的金属棒ab从圆弧M点处由静止释放,下滑至N处后进入水平导轨部分,M到N的竖直高度为h,重力加速度为g,若金属捧ab始终垂直于金属导轨并接触良好,且两棒相距足够远,求:
(1)金属棒ab滑到N处时,金属导轨对金属棒ab的支持力为多大?
(2)金属棒cd在此后的运动过程中达到的最大速度为多少?
(3)从释放金属棒ab到金属棒cd达到最大速度过程中,金属棒cd产生的内能为多少?
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】随着信息技术的发展,中学物理的实验手段也在不断进步。用“位移传感器”把物体运动的位移、时间转换成电信号,经过计算及的处理,可以立刻在屏幕上显示物体运动的速度。
如图是利用位移传感器测量速度的示意图。这个系统由发射器A与接收器B组成,发射器A能够发射红外线(一种特殊的光线)和超声波(一种特殊的声波)信号,接收器B可以接收红外线和超声波信号。发射器A固定在被测的运动物体上,接收器B固定在桌面上或滑轨上。测量时A向B同时发射一个红外线脉冲和一个超声波脉冲(即持续时间很短的一束红外线和一束超声波)。B接收到红外线脉冲开始计时,接收到超声波脉冲时停止计时。根据两者的时差和空气中的声速,计算机自动算出A与B的距离。
当小车运动到P位置时,由A向B同时发射一个红外线脉冲和一个超声波脉冲,B端接收到两个脉冲的时间差为△t1。经过t时间小车由P位置运动至Q位置,此时再由A向B同时发射一个红外线脉冲和一个超声波脉冲,B端接收到两个脉冲的时间差为△t2。超声波在空气中的传播速度为u。通过计算机的自动运算,可以计算出小车从P到Q的平均速度的大小。根据以上信息解决下列问题:
(1)在该问题中,是否需要考虑红外线的传播时间?请简述理由。
(2)求小车从P运动至Q的平均速度v的表达式。
(3)实际上利用该传感器,我们更希望测得小车瞬时速度的大小。为了测量P点的瞬时速度,那么我们选定的“时间间隔”应当尽量的小。然而本题中有三个时间间隔,△t1、t、△t2。请判断这三个时间间隔中,哪个或者哪几个应当尽量短一些,才能获得更为准确的瞬时速度?请简述理由。
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】t=0时,甲乙两汽车从相邻70km的两地开始相向行驶,它们的v-t图象如图所示。忽略汽车掉头所需时间。下列对汽车运动状况的描述正确的是
A. 在第1小时末,乙车改变运动方向
B. 在第2小时末,甲乙两车相距10km
C. 在第3小时内,甲乙两车相遇一次
D. 在第4小时末,甲乙两车相距20km
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图所示,放在粗糙的固定斜面上的物块 A 和悬挂的物体 B 均处于静止状 态.轻绳 AO 绕过光滑的定滑轮与轻弹簧的右端及轻绳 BO 的上端连接于 O 点, 轻弹簧中轴线沿水平方向,轻绳的 OC 段与竖直方向的夹角θ=53°,斜面倾角α=37°, 物块 A 和 B 的质量分别为mA=5kg ,mB=1.5kg,弹簧的劲度系数 k=500N/m ,(sin37°=0.6,cos37°=0.8,重力加速度 g=10m/s2),求:
(1)弹簧的伸长量 x;
(2)物块 A 受到的摩擦力.
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】科技馆中的一个展品如图所示,在较暗处有一个不断均匀滴水的水龙头,在一种特殊的间歇闪光灯的照射下,若调节间歇闪光间隔时间正好与水滴从A下落到B的时间相同,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,对出现的这种现象,下列描述正确的是(g=10 m/s2)( )
A. 水滴在下落过程中通过相邻两点之间的时间满足tAB<tBC<tCD
B. 闪光的间隔时间是
C. 水滴在相邻两点间的平均速度满足 ∶∶=1∶4∶9
D. 水滴在各点的速度之比满足vB∶vC∶vD=1∶2∶3
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图所示,质量为60kg的滑雪运动员,在倾角θ为37°的斜坡顶端,从静止开始自由下滑50m到达坡底,用时5s,然后沿着水平路面继续自由滑行,直至停止,不计拐角处能量损失,滑板与斜面及水平面间的动摩擦因数相同,g取10m/s2,sin37°=0.6,cos37°=0.8,求:
⑴运动员下滑过程中的加速度大小;
⑵滑板与坡面间的滑动摩擦力大小;
⑶运动员在水平路面上滑行的时间。
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图所示,电源电动势E=3V,内阻为r=1Ω,R1=0.5Ω,R2=1Ω,滑动变阻器R最大阻值为5Ω,平行板电容器两金属板水平放置,开关S是闭合的,两板间一质量为m,电荷量大小为q的油滴恰好处于静止状态,G为灵敏电流计。则下列说法正确的是()
A.若电阻R2断路,油滴向上加速运动,G中有从a到b的电流
B.在将滑动变阻器滑片P向上移动的过程中,油滴向 下加速运动,G中有从a到b的电流
C.当滑动变阻器阻值为1Ω时,电源的效率最大
D.当滑动变阻器阻值为0时,R1的功率最大
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图所示,有两根足够长的 平行光滑导轨水平放置,右侧用一小段光滑圆弧和另一对竖直光滑导轨平滑连接,导轨间距L=lm。细金属棒 ab和cd垂直于导轨静止放置,它们的质量m均为lkg,电阻R均为0.5Ω。cd棒右侧lm处有一垂直于导轨平面向下的矩形匀强磁场区域,磁感应强度B=1T,磁场区域长为s。以cd棒的初始位置为原点,向右为正方向建立坐标系。现用向右的水平变力F作用于ab棒上,力随时间变化的规律为F=(0.25t+1)N,作用4秒后撤去F。撤去F之后ab棒与cd棒发生完全弹性碰撞,cd棒向右运动。金属棒与导轨始终接触良好,导轨电阻不计,空气阻力不计。求:
(1)撤去力F的瞬间,ab棒的速度大小;
(2)若s=lm,求cd棒滑上右侧竖直导轨,距离水平导轨的最大高度h;
(3)若可以通过调节磁场右边界的位置来改变s的大小,求cd棒最后静止时的位置x与s的关系。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com