¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öAÇòµÄ¼ÓËٶȣ¬ÓÉËÙ¶ÈλÒƹ«Ê½Çó³öAÇòÓëBÇòÅöײǰµÄËٶȣ®ÓÉÓÚÅöײ¹ý³ÌÖÐA¡¢BÁ½Çò×ܶ¯ÄÜÎÞËðʧ£¬½»»»Ëٶȣ®
£¨2£©¸ù¾ÝËٶȹ«Ê½Çó³öµÚÒ»´ÎÅöײʱ¼ä£®µÚÒ»´ÎÅöºó£¬AÇò×·¼°BÇò£¬µ±Î»ÒÆÏàµÈʱ£¬·¢ÉúµÚ¶þÅöײ£¬ÓÉλÒÆÏàµÈÇó³öµÚ¶þ´ÎÅöײʱ¼ä£®Í¬ÀíÇó½âµÚÈý´ÎÅöײʱ¼ä£®
£¨3£©ÒªÇóAÔÚÔ˶¯¹ý³ÌÖжÔ×ÀÃæʼÖÕÎÞѹÁ¦ÇҸպò»À뿪ˮƽ×ÀÃ棬ÂåÂ××ÈÁ¦ÓëÖØÁ¦Æ½ºâ£®²ÉÓùéÄÉ·¨·Ö±ð·ÖÎö´Ó¼ÆʱÁãµãµ½¼´½«·¢ÉúµÚ1´ÎÅöײÕâ¶Î¹ý³Ì¡¢µÚ1´ÎÅöײµ½¼´½«·¢ÉúµÚ2´ÎÅöײÕâ¶Î¹ý³Ì¡¢´ÓµÚ2´ÎÅöײµ½¼´½«·¢ÉúµÚ3´ÎÅöײÕâ¶Î¹ý³Ì¡ÓÉAÇòÊúÖ±·½ÏòÁ¦Æ½ºâµÃµ½B
£¨t£©Óëʱ¼ätµÄ¹Øϵʽ£¬×ܽá³ö¹æÂÉ£¬ÔÙÇó´Å³¡B
£¨t£©Óëʱ¼ätµÄº¯Êý¹Øϵ£®
½â´ð£º½â£º£¨1£©AÇòµÄ¼ÓËÙ¶ÈΪa=
ÅöÇ°AµÄËÙ¶ÈΪv
A1=
=
£¬ÅöÇ°BµÄËÙ¶ÈΪv
B1=0ÓÉÓÚÅöײ¹ý³ÌÖÐA¡¢BÁ½Çò×ܶ¯ÄÜÎÞËðʧ£¬½»»»Ëٶȣ¬ÔòÅöײºóA¡¢BµÄËٶȷֱð
v
A1¡ä=0£¬v
B1¡ä=v
A1=
£®
£¨2£©A¡¢BÇò·¢ÉúµÚÒ»´Î¡¢µÚ¶þ´Î¡¢µÚÈý´ÎµÄÅöײʱ¼ä·Ö±ðΪt
1¡¢t
2¡¢t
3£®
Ôòt
1=
=
µÚÒ»´ÎÅöºó£¬¾t
2-t
1ʱ¼äA¡¢BÁ½Çò·¢ÉúµÚ¶þ´ÎÅöײ£¬ÉèÅöǰ˲¼äA¡¢BÁ½ÇòËÙ¶ÈΪv
A2ºÍv
B2£¬ÔòÓÐ
v
B1¡ä£¨t
2-t
1£©=
a£¨t
2-t
1£©
2½âµÃ£¬t
2=3t
1v
A2=a£¨t
2-t
1£©=2at
1=2v
A1=2
£®
v
B2=v
B1¡ä=
£®
µÚ¶þ´ÎÅöºó˲¼ä£¬A¡¢BÁ½ÇòËٶȷֱðΪ
v
A2¡äºÍv
B2¡ä£¬¾t
3-t
2ʱ¼äA¡¢BÁ½Çò·¢ÉúÅöײ£¬²¢ÉèÅöײǰ˲¼äA¡¢BÁ½ÇòËٶȷֱðv
A3ºÍv
B3Ôòv
A2¡ä=v
B2=
£®
v
B2¡ä=v
A2=2
£®
µ±v
B2¡ä£¨t
3-t
2£©=v
A2¡ä£¨t
3-t
2£©+
a£¨t
3-t
2£©
2·¢ÉúµÚÈý´ÎÅöײ
½âµÃ£¬t
3-t
2=t
2-t
1£¬t
3=5
£®
£¨3£©¶ÔAÇò£¬ÒªÇóAÔÚÔ˶¯¹ý³ÌÖжÔ×ÀÃæʼÖÕÎÞѹÁ¦ÇҸպò»À뿪ˮƽ×ÀÃ棬ÂåÂ××ÈÁ¦ÓëÖØÁ¦Ç¡ºÃƽºâ£¬µÃ
BQv
A=mg£¬µÃB=
£¬AÇòµÄ¼ÓËÙ¶ÈΪ a=
Ôò´ÓAÇò¿ªÊ¼Ô˶¯µ½·¢ÉúµÚ1´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
0£¼t¡Ü
´ÓµÚ1´ÎÅöײµ½·¢ÉúµÚ2´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
¡Üt¡Ü3
´ÓµÚ2´ÎÅöײµ½·¢ÉúµÚ3´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
3
¡Üt¡Ü5
´ÓµÚ3´ÎÅöײµ½·¢ÉúµÚ4´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
5
¡Üt¡Ü7
¡
ÒÔ´ËÀàÍÆ£¬´ÓµÚn´ÎÅöײµ½·¢ÉúµÚn+1´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
£¨2n-1£©
¡Üt¡Ü£¨2n+1£©
£¨n=1£¬2£¬3£¬¡£©
´ð£º
£¨1£©µÚÒ»´ÎÅöײ½áÊø˲¼äA¡¢BÁ½ÇòµÄËٶȸ÷Ϊ0ºÍ
£®
£¨2£©´Ó¼ÆʱÁãµãµ½¼´½«·¢ÉúµÚÈý´ÎÅöײʱËù¾ÀúµÄ×Üʱ¼äΪ5
£®
£¨3£©´Å³¡B£¨t£©Óëʱ¼ätµÄº¯Êý¹ØϵÊÇ B£¨t£©=
£¨2n-1£©
¡Üt¡Ü£¨2n+1£©
£¨n=1£¬2£¬3£¬¡£©£®
µãÆÀ£º±¾ÌâÊÇСÇòÖÜÆÚÐÔÔ˶¯ÎÊÌ⣬¹Ø¼üÒª²ÉÓùéÄÉ·¨×ܽá¹æÂÉ£¬ÔËÓÃÊýѧ·½·¨Çó½â£®