精英家教网 > 高中物理 > 题目详情
2.做平抛运动物体在运动程(  )
A.重力做正功,重力势能增加B.重力做正功,重力势能减少
C.重力做负功,重力势能减少D.重力做负功,重力势能增加

分析 明确重力做功的性质,知道重力做功只与高度有关,而重力势能与重力做功有关,高度下降时重力做正功,重力势能减小;高度上升时,重力做负功,重力势能增加.

解答 解:由于做平抛运动的物体高度下降,故重力做正功,重力势能减小,故ACD错误,B正确.
故选:B.

点评 本题考查重力做功与重力势能之间的关系,要注意明确两点:一、重力做功只与初末位置的高度差有关;二、重力做功量度重力势能的变化,重力做正功时重力势能减小,重力做负功时重力势能增大.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

14.如图所示,光滑水平地面上,质量分别为2kg、1kg可视为质点的两滑块A、B,在水平外力作用下紧靠在一起(不粘连)压紧劲度系数为50N/m的弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为6cm,现突然改变外力F使B向右左匀加速运动,到两滑块A、B间作用力恰好为零外力F为1N,则(  )
A.此时滑块的压缩量为零B.此时滑块B的运动速度为0.2m/s
C.在此过程滑块A的位移大小为4cmD.在此过程滑块B的运动时间为0.2s

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

15.如图,光滑斜面的倾角为θ,斜面上放置一矩形导体线框abcd,ab边的边长为l1,bc边的边长为l2,线框的质量为m,电阻为R,线框通过绝缘细线绕过光滑的滑轮与重物相连,重物质量为M,斜面上ef线(ef平行底边)的右方有垂直斜面向上的匀强磁场,磁感应强度为B,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab边始终平行底边,则下列说法不正确的是(  )
A.线框进入磁场前运动的加速度为$\frac{Mg-mgsinθ}{m}$
B.线框进入磁场时匀速运动的速度为$\frac{(Mg-mgsinθ)R}{B{l}_{1}}$
C.线框做匀速运动的总时间为$\frac{{B}^{2}{{l}_{1}}^{2}}{(Mg-mgsinθ)R}$
D.该匀速运动过程产生的焦耳热为(Mg-mgsinθ)l2

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

12.正方向导线框abcd置于光滑水平桌面上,其质量为m,电阻值为R,边长为L,在线框右侧距离cd边2L处由一宽度为2L的匀强磁场区域,磁场的左、右边界与线框的cd边平行,磁场的磁感应强度大小为B,方向竖直向下,其俯视图如图.对线框施加一水平向右的恒力F,使之由静止开始向右运动,cd边始终与磁场边界平行.已知线框cd边经过磁场左、右边界时速度相同,则线框(  )
A.离开磁场区域过程中的电流方向为dcbad
B.通过磁场区域过程中的焦耳热为2FL
C.通过磁场区域过程中的最小速度为$\sqrt{\frac{2FL}{m}}$
D.进入磁场区域过程中受到的安培力的冲量大小为$\frac{{{B^2}{L^3}}}{R}$

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

19.如图,在水平地面上有两物块甲和乙,它们的质量分别为2m、m,甲与地面间无摩擦,乙与地面间动摩擦因数为μ.现让甲物体以速度v0向着静止的乙运动并发生正碰,试求:
(1)若甲与乙第一次碰撞过程中系统的动能最小,求出此动能最小值;
(2)若甲在乙刚停下来时恰好与乙发生第二次碰撞,
①第一次碰撞后乙物块的速度;
②第一次碰撞中系统损失了多少机械能?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

7.如图所示,两条足够长的平行金属导轨倾斜放置(导轨电阻不计),倾角为30°,导轨间距为0.5m,匀强磁场垂直导轨平面向下,B=0.2T,两根材料相同的金属棒a、b与导轨构成闭合回路,a、b金属棒的质量分别为3kg、2kg,两金属棒的电阻均为R=1Ω,刚开始两根金属棒都恰好静止,假设最大静摩擦力近似等于滑动摩擦力.现对a棒施加一平行导轨向上的恒力F=60N,经过足够长的时间后,两金属棒都达到了稳定状态.求:
(1)金属棒与导轨间的动摩擦因数;
(2)设当a金属棒从开始受力向上运动5m时,b金属棒向上运动了2m,且此时a的速度为4m/s,b的速度为1m/s,则求此过程中回路中产生的电热及通过a金属棒的电荷量.
(3)当两金属棒都达到稳定状态时,b棒所受的安培力.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

14.如图所示,固定在上、下两层水平面上的平行金属导轨MN、M′N′和OP、O′P′间距都是l,二者之间固定有两组竖直半圆形轨道PQM和P′Q′M′,两轨道间距也均为l,且PQM和P′Q′M′的竖直高度均为4R,两组半圆形轨道的半径均为R.轨道的QQ′端、MM′端的对接狭缝宽度可忽略不计,图中的虚线为绝缘材料制成的固定支架,能使导轨系统位置固定.将一质量为m的金属杆沿垂直导轨方向放在下层导轨的最左端OO′位置,金属杆在与水平成θ角斜向上的恒力作用下沿导轨运动,运动过程中金属杆始终与导轨垂直,且接触良好.当金属杆通过4R的距离运动到导轨末端PP′位置时其速度大小vP=4$\sqrt{gR}$.金属杆和导轨的电阻、金属杆在半圆轨道和上层水平导轨上运动过程中所受的摩擦阻力,以及整个运动过程中所受空气阻力均可忽略不计.
(1)已知金属杆与下层导轨间的动摩擦因数为μ,求金属杆所受恒力F的大小;
(2)金属杆运动到PP′位置时撤去恒力F,金属杆将无碰撞地水平进入第一组半圆轨道PQ和P′Q′,又在对接狭缝Q和Q′处无碰撞地水平进入第二组半圆形轨道QM和Q′M′的内侧,求金属杆运动到半圆轨道的最高位置MM′时,它对轨道作用力的大小;
(3)若上层水平导轨足够长,其右端连接的定值电阻阻值为r,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中.金属杆由第二组半圆轨道的最高位置MM′处,无碰撞地水平进入上层导轨后,能沿上层导轨滑行.求金属杆在上层导轨上滑行的最大距离.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

11.小球两次从同一位置水平抛出,运动轨迹如图所示.轨迹上a、b两点在同一水平线上.设小球从抛出到运动到a、b两点运动的时间分别为t1、t2,则(  )
A.t1=t2B.t1>t2C.t1<t2D.无法判断

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

12.利用如图甲所示的电路,完成对电动势约为1.5V、内阻约为几欧姆的电源的电动势和内阻的测定.其中R为电阻箱,R0为阻值150Ω的定值电阻.连接好电路后,通过调节电阻箱的阻值,读出了8组电压表的读数以及相对应的电阻箱的阻值,并以电压的倒数$\frac{1}{U}$为纵坐标、电阻箱的阻值R为横坐标,把记录的数据描绘在了坐标系中,如图乙所示.
(1)如果电源电动势用E表示,电源内阻用r表示,则$\frac{1}{U}$关于R的表达式应为$\frac{1}{U}$=$\frac{1}{ER_{0}}$R+$\frac{R_{0}+r}{ER_{0}}$.(用E、r、R0表示)
(2)图乙是根据测量数据画出的图线.求出该图线的斜率k=0.0044V-1•Ω-1,图线与纵轴交点的纵坐标b=0.70V-1.(结果保留两位有效数字)
(3)结合写出的函数表达式以及图线可知该电源电动势E=1.52V,内阻r=9.09Ω.(结果保留三位有效数字)

查看答案和解析>>

同步练习册答案