精英家教网 > 高中物理 > 题目详情
如图所示,竖直平面内的3/4圆弧形光滑轨道ABC,其半径为R,A端与圆心O等高,B为轨道最低点,C为轨道最高点.AE为水平面,一小球从A点正上方由静止释放,自由下落至A点进入圆轨道并恰能到达C点.求:
(1)落点D与O点的水平距离S;
(2)释放点距A点的竖直高度h;
(3)若小球释放点距离A点的高度为H,假设轨道半径R可以改变,当R取多少时,落点D与圆心O之间的距离最大,并求出这个最大值.
分析:(1)小球恰能到达C点,知小球到达C点时对轨道的压力为0,重力提供向心力,mg=m
v2
R
求出C点的速度,小球离开C点做平抛运动,高度决定时间,根据时间和C点的速度求出水平距离.
(2)从释放点到C点运用动能定理,根据动能定理求出释放点距离A点的高度.
(3)求出当半径为R时,通过C点的速度和平抛运动的时间,然后求出水平位移,根据二次函数求极值的方法,求出落点D与圆心O之间的距离最大时R的值.
解答:解:(1)在C点有:mg=m
vc2
R

vc=
gR

根据R=
1
2
gt2
得,t=
2R
g

s=vct=
gR
2R
g
=
2
R

故落点D与O点的水平距离S为
2
R

(2)从释放点到C点运用动能定理,有mg(h-R)=
1
2
mvc2-0

h=
3
2
R

故释放点距A点的竖直高度h为
3
2
R

(3)根据动能定理得,mg(H-R)=
1
2
mvc2-0

vc′=
2g(H-R)

平抛运动的时间t=
2R
g

则平抛运动的水平位移x=vc′t=
2g(H-R)
2R
g
=
4R(H-R)
=
-4(R-
H
2
)2+H2

当R=
H
2
时,落点D与圆心O之间的距离最大,最大值为H.
点评:解决本题的关键知道球到达C点时对轨道的压力为0,有mg=m
v2
R
,以及能够熟练运用动能定理.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

如图所示,竖直平面内有一段不光滑的斜直轨道与光滑的圆形轨道相切,切点P与圆心O的连线与竖直方向的夹角为θ=60°,圆形轨道的半径为R,一质量为m的小物块从斜轨道上A点由静止开始下滑,然后沿圆形轨道运动,A点相对圆形轨道底部的高度h=7R,物块通过圆形轨道最高点c时,与轨道间的压力大小为3mg.求:
(1)物块通过轨道最高点时的速度大小?
(2)物块通过轨道最低点B时对轨道的压力大小?
(3)物块与斜直轨道间的动摩擦因数μ=?

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示的竖直平面内有范围足够大,水平向左的匀强电场,在虚线的左侧有垂直纸面向里的匀强磁场,磁感应强度大小为B,一绝缘轨道由两段直杆和一半径为R的半圆环组成,固定在纸面所在的竖直平面内,PQ、MN水平且足够长,半圆环MAP的磁场边界左侧,P、M点在磁场边界线上.现在有一质量为m、带电荷量为+q的中间开孔的小环穿在MN杆上,可沿轨道运动,它所受电场力为重力的
34
倍.不计一切摩擦.现将小球从M点右侧的D点由静止释放,DM间距离x0=3R.
(1)求小球第一次通过与O等高的A点时的速度vA大小,及半圆环对小球作用力N的大小;
(2)小球的半圆环所能达到的最大动能Ek

查看答案和解析>>

科目:高中物理 来源: 题型:

精英家教网如图所示,竖直平面内有一固定的光滑椭圆大环,其长轴长BD=4L、短轴长AC=2L.劲度系数为k的轻弹簧上端固定在大环的中心O,下端连接一个质量为m、电荷量为q、可视为质点的小环,小环刚好套在大环上且与大环及弹簧绝缘,整个装置处在水平向右的匀强电场中.将小环从A点由静止释放,小环运动到B点时速度恰好为0.已知小环在A、B两点时弹簧的弹力大小相等,则(  )
A、小环从A点运动到B点的过程中,弹簧的弹性势能先减小后增大
B、小环从A点运动到B点的过程中,小环的电势能一直增大
C、电场强度的大小E=
mg
q
D、小环在A点时受到大环对它的弹力大小F=mg+
1
2
kL

查看答案和解析>>

科目:高中物理 来源: 题型:

精英家教网如图所示,竖直平面内的光滑绝缘轨道由斜面部分AB和圆弧部分BC平滑连接,且圆弧轨道半径为R,整个轨道处于水平向右的匀强电场中.一个带正电的小球(视为质点)从斜轨道上某一高度处由静止释放,沿轨道滑下(小球经过B点时无动能损失),已知小球的质量为m,电量为q,电场强度E=
mgq
,求:
(1)小球到达圆轨道最高点C时速度的最小值?
(2)小球到达圆轨道最高点C速度最小值时,在斜面上释放小球的位置距离地面有多高?(结论可以用分数表示)

查看答案和解析>>

同步练习册答案