精英家教网 > 高中物理 > 题目详情
13.如图所示,装置由一理想弹簧发射器及两个轨道组成.其中轨道Ⅰ由光滑轨道AB与粗糙直轨道BC平滑连接,高度差分别是h1=0.2m、h2=0.10m,BC水平距离L=1.00m.轨道Ⅱ由AE、螺旋圆形EFG和GB三段光滑轨道平滑连接而成,且A点与F点等高.当弹簧压缩量为d时,恰能使质量m=0.05kg的滑块沿轨道Ⅰ上升到B点;当弹簧压缩量为2d时,恰能使滑块沿轨道Ⅰ上升到C点.(已知弹簧弹性势能与压缩量的平方成正比)

(1)当弹簧压缩量为d时,求弹簧的弹性势能及滑块离开弹簧瞬间的速度大小;
(2)求滑块与轨道BC间的动摩擦因数;
(3)当弹簧压缩量为d时,若沿轨道Ⅱ运动,滑块能否上升到B点?请通过计算说明理由.

分析 (1)当弹簧压缩量为d时,释放后弹簧的弹性势能转化为滑块的动能,滑块在轨道Ⅰ上升到B点的过程中,滑块的动能转化为重力势能,由机械能守恒定律求解.
(2)当弹簧压缩量为2d时,弹簧的弹性势能是弹簧压缩量为d时弹性势能的4倍,对滑块释放到C的整个过程,运用能量守恒定律列式,可求得滑块与轨道BC间的动摩擦因数.
(3)若要能使滑块上升到B点,根据机械能守恒定律分析能否上升到B点.

解答 解:(1)当弹簧压缩量为d时,根据机械能守恒定律得弹簧的弹性势能为:
EP1=mgh1=0.05×10×0.2J=0.1J
且有 $\frac{1}{2}m{v}^{2}$=mgh1
解得滑块离开弹簧瞬间的速度大小为:
v=$\sqrt{2g{h}_{1}}$=$\sqrt{2×10×0.2}$=2m/s
(2)当弹簧压缩量为2d时,由题可得:弹簧的弹性势能是弹簧压缩量为d时弹性势能的4倍,即为:
EP2=4EP1=0.4J
对滑块从弹簧释放后运动到C点的过程,根据能量守恒定律得:
EP2=mg(h1+h2)+μmgcosα•LBC=mg(h1+h2)+μmgL
解得:μ=0.5
(3)滑块恰能圆环最高点应满足的条件是:
   mg=m$\frac{{v}_{0}^{2}}{{R}_{m}}$
根据机械能守恒定律得:$\frac{1}{2}m{v}^{2}$=$\frac{1}{2}m{v}_{0}^{2}$
即得 v0=v  
联立解得 Rm=0.4m
若R≤Rm=0.4m滑块能通过圆环最高点. 
设滑块在EB轨道上上升的最高点离图中虚线的高度为h.
根据机械能守恒定律得:
EP1=mgh
解得:h=0.2m
由于h=h1,所以滑块能上升到B点.
若R>Rm=0.4m滑块不能通过圆环最高点,会脱离圆形轨道,所以不能到达B点. 

答:
(1)当弹簧压缩量为d时,弹簧的弹性势能是0.1J,滑块离开弹簧瞬间的速度大小是2m/s;
(2)滑块与轨道BC间的动摩擦因数是0.5;
(3)当弹簧压缩量为d时,若沿轨道Ⅱ运动,若R≤0.4m,滑块能上升到B点.若R>0.4m滑块不能到达B点.

点评 解决本题的关键要明确能量是如何转化的,注意选择解题过程,运用能量守恒定律研究.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

3.某实验小组用下列器材设计了如图1所示的欧姆表电路,通过调控电键S和调节电阻箱,可使欧姆表具有“×1”、“×10”两种倍率.
A.干电池:电动势E=1.5V,内阻r=0.5Ω
B.电流表mA:满偏电流Ig=1mA,内阻Rg=150Ω
C.定值电阻R1=1200Ω
D.电阻箱R2:最大阻值999.99Ω
E.电阻箱R3:最大阻值999.99Ω
F.电阻箱R4:最大阻值9999Ω
G.电键一个,红、黑表笔各1支,导线若干

(1)该实验小组按图1正确连接好电路.当电键S断开时,将红、黑表笔短接,调节电阻箱R2,使电流表达到满偏电流,此时闭合电路的总电阻叫做欧姆表的内阻R,则R=1500Ω,欧姆表的倍率×10(选填“×1”、“×10”).
(2)闭合电键S:
第一步:调节电阻箱R2和R3,当R2=14.5Ω且R3=150Ω时,再将红、黑表笔短接,电流表再次达到满偏电流.
第二步:在红、黑表笔间接入电阻箱R4,调节R4,当电流表指针指向图2所示的位置时,对应的欧姆表的刻度值为50Ω.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

4.如图所示,矩形线圈abcd的匝数为 n=50匝,线圈ab的边长为L1=0.2m,bc的边长为L2=0.25m,在磁感应强度为B=0.4T的匀强磁场中,绕垂直于磁感线且通过线圈中线的OO′轴匀速转动,转动的角速度ω=100$\sqrt{2}$ rad/s,试求:
(1)穿过线圈平面的最大磁通量Φm
(2)线圈在题图所示位置(线圈平面与磁感线平行)时,感应电动势e的大小.
(3)若线圈在中性面位置开始计时,写出此交变电流电动势瞬时值表达式.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

1.在光电效应实验中,采用极限频率为νc=5.5×1014Hz钠阴极,已知普朗克常量h=6.6×10-34 J•s,电子质量m=9.1×10-31kg.用频率ν=7.5×1014Hz的紫光照射钠阴极产生光电子的(  )
A.动能的数量级为l0-19JB.速率的数量级为l08m/s
C.动量的数量级为l0-27 kg•m/sD.德布罗意波长的数量级为l0-9m

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

8.在“练习使用多用电表”的实验中:
(1)用多用电表测某电阻,档位钮指“×100”档,读数时发现指针偏转角度太大,为使测量结果更加准确,则应改用×10挡:
(2)用已调零且选择旋钮指向欧姆档:“×10”位置的多用表测某电阻阻值,根据图所示的表盘,被测电阻阻值为180Ω.若将该表选择旋钮置于5mA挡测电流,表盘仍如图所示,则被电流为2.23mA.若将该表选择旋钮置于250V挡测电流,表盘仍如图所示,则被电压为112V.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

18.伽利略为了研究自由落体运动的规律,做了著名的“斜面实验”,关于伽利略做“斜面实验”原因的说法正确的是(  )
A.斜面实验主要是为了方便测量小球运动的位移和时间
B.斜面实验主要为了方便测量小球运动的加速度
C.斜面实验主要为了方便测量小球运动的速度
D.小球在斜面上的运动规律与自由落体运动规律相同

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

5.作物理学发展过程中.观测、实验、假说和逻辑推理等方法都起到了重要作用.下列叙述符合史实的是(  )
A.安培在实验中首先观察到电流的磁效应,该效应揭示了电和磁之间存在联系
B.奥斯特根据通电螺线管的磁场和条形磁铁的磁场的相似性,抛出分子电流假说
C.法拉第首先在实验中观察到,变化的磁场能在闭合线圈中产生感应电流
D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总与引起感应电流的磁场方向相反

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

2.有一匀强电场,其电场线与坐标平面xOy平行,以原点O为圆心,R为半径的圆周上任意一点Q的电势φ=φ1cosθ+φ2,其中已知量φ1、φ2>0,θ为O、Q两点连线与x轴间的夹角,如图所示,该匀强电场的电场强度(  )
A.方向沿x轴负方向,大小为$\frac{{φ}_{1}}{R}$B.方向沿x轴负方向,大小为$\frac{{φ}_{2}}{R}$
C.方向沿y轴正方向,大小为$\frac{{φ}_{1}}{R}$D.方向沿y轴正方向,大小为$\frac{{φ}_{2}}{R}$

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

3.下列说法正确的是(  )
A.将核子束缚在原子核内的核力,是不同于万有引力和电磁力的另一种相互作用力且每个核子只跟邻近的核子发生核力的作用,它具有饱和性
B.在核反应堆中利用慢化剂(如石墨、重水等)来减慢核反应的速度
C.普朗克引入了能量子的概念,得出黑体辐射的强度按波长分布的公式,与实验符合得非常好,并由此开创了物理学的新纪元
D.人工放射性同位素的半衰期比天然放射性物质长的多,放射性废料容易处理,因此凡是用到射线时,用的都是人工放射性同位素,而不用天然放射性物质
E.比结合能小的原子核结合成比结合能大的原子核时一定放出核能

查看答案和解析>>

同步练习册答案