·ÖÎö ½â¾öʵÑéÎÊÌâÊ×ÏÈÒªÕÆÎÕ¸ÃʵÑéÔÀí£¬Á˽âʵÑéµÄÒÇÆ÷¡¢²Ù×÷²½ÖèºÍÊý¾Ý´¦ÀíÒÔ¼°×¢ÒâÊÂÏÇå³þ¸ÃʵÑéµÄÎó²îÀ´Ô´£®
Ö½´ø·¨ÊµÑéÖУ¬ÈôÖ½´øÔȱäËÙÖ±ÏßÔ˶¯£¬²âµÃÖ½´øÉϵĵã¼ä¾à£¬ÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£¬¿É¼ÆËã³ö´ò³öijµãʱֽ´øÔ˶¯µÄ˲ʱËٶȣ¬´Ó¶øÇó³ö¶¯ÄÜ£®¸ù¾Ý¹¦ÄܹØϵµÃÖØÁ¦ÊÆÄܼõСÁ¿µÈÓÚÖØÁ¦×ö¹¦µÄÊýÖµ£®
½â´ð ½â£º£¨1£©A¡¢ÔÚ°²×°µç»ð»¨¼ÆʱÆ÷ʱ£¬Ä«·ÛÖ½ÅÌÒª¼ÐÔÚÁ½ÌõÖ½´øÖ®¼ä£¬¹ÊAÕýÈ·£»
B¡¢ÎªÁ˼õСÎó²î£¬ÖØÎïÖÊÁ¿Ó¦´óЩ£¬Ìå»ýÓ¦¸ÃСЩ£¬¹ÊBÕýÈ·£»
C¡¢ÊµÑéʱ£¬Ó¦ÏȽÓͨµçÔ´£¬ÔÙËÉ¿ªÖ½´ø£¬¹ÊC´íÎó£»
D¡¢Èç¹û°ÑÖØÎïµÄʵ¼ÊÔ˶¯¿´³É×ÔÓÉÂäÌåÔ˶¯£¬ÔÙÔËÓÃ×ÔÓÉÂäÌåµÄ¹æÂÉÇó½âËٶȣ¬ÄÇô¾Í²»ÐèÒªÑéÖ¤£¬¹ÊD´íÎó£»
£¨2£©¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯ÖÐʱ¼äÖеãµÄ˲ʱËٶȵÈÓڸùý³ÌÖеÄƽ¾ùËÙ¶ÈÓУº
vB=$\frac{{x}_{AC}}{2T}$=$\frac{0.0312-0.0078}{2¡Á0.02}$=0.59m/s
ËùÒÔÆ䶯ÄÜΪ£ºEkB=$\frac{1}{2}$m${v}_{B}^{2}$=$\frac{1}{2}$¡Á0.1¡Á£¨0.59£©2=0.0171J
ÖØÁ¦×ö¹¦µÈÓÚÖØÁ¦ÊÆÄܵļõСÁ¿£¬Òò´ËÓУº
¡÷EP=mgx=0.1¡Á9.8¡Á0.0176=0.0172J
£¨3£©ÀûÓÃ$\frac{1}{2}$v2-hͼÏß´¦ÀíÊý¾Ý£¬´ÓÀíÂ۽ǶÈÎïÌå×ÔÓÉÏÂÂä¹ý³ÌÖлúеÄÜÊغã¿ÉÒԵóö£º
mgh=$\frac{1}{2}$mv2£¬¼´$\frac{1}{2}$v2=gh
ËùÒÔÒÔ$\frac{1}{2}$v2Ϊ×ÝÖᣬÒÔhΪºáÖỳöµÄͼÏßÓ¦ÊǹýÔµãµÄÇãбֱÏߣ¬Ò²¾ÍÊÇͼÖеÄC£®
¹Ê´ð°¸Îª£º£¨1£©AB£» £¨2£©0.0171£» 0.0172£»£¨3£©C£®
µãÆÀ ÕýÈ·½â´ðʵÑéÎÊÌâµÄÇ°ÌáÊÇÃ÷ȷʵÑéÔÀí£¬´ÓʵÑéÔÀí³ö·¢½øÐзÖÎöËùÐèʵÑéÆ÷²Ä¡¢Ëù²âÊý¾Ý¡¢Îó²î·ÖÎöµÈ£¬»áÆðµ½Ê°빦±¶µÄЧ¹û£®
ÓÃÔ˶¯Ñ§¹«Ê½¡¢ÍÆÂۺͶ¯ÄÜ¡¢ÖØÁ¦ÊÆÄܵĶ¨Òåʽ½â¾öÎÊÌâÊǸÃʵÑéµÄ³£¹æÎÊÌ⣬ҪעÒⵥλµÄ»»ËãºÍÓÐЧÊý×ֵı£Áô£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | Îï¿é»¬¶¯Ê±ÊܵÄĦ²ÁÁ¦´óСÊÇ6N | |
B£® | Îï¿éµÄÖÊÁ¿Îª2kg | |
C£® | Îï¿éÔÚ6¡«9sÄڵļÓËٶȴóСÊÇ1m/s2 | |
D£® | Îï¿éÔÚ9sÄÚµÄƽ¾ùËٶȴóСÊÇ4m/s |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{L_1}{2}\sqrt{\frac{g}{6h}}£¼v£¼{L_1}\sqrt{\frac{g}{6h}}$ | B£® | $\frac{L_1}{4}\sqrt{\frac{g}{h}}£¼v£¼{L_1}\sqrt{\frac{£¨4L_1^2+L_2^2£©g}{6h}}$ | ||
C£® | $\frac{L_1}{2}\sqrt{\frac{g}{6h}}£¼v£¼\frac{L_1}{2}\sqrt{\frac{£¨4L_1^2+L_2^2£©g}{6h}}$ | D£® | $\frac{L_1}{4}\sqrt{\frac{g}{h}}£¼v£¼\frac{1}{2}\sqrt{\frac{£¨4L_1^2+L_2^2£©g}{6h}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com