精英家教网 > 高中物理 > 题目详情
16.一内壁光滑的细导管弯成圆周轨道竖直放置,其质量为2m.质量为m的小球在管内滚动,当小球运动到最高点时.导管对地面的压力刚好为零.已知轨道半径为R.当地的重力加速度为g.求:
(1)此时小球的速度v多大?
(2)当小球运动到轨道的最低点时速度Vt=$\sqrt{7gR}$,导管对地面的压力多大?

分析 (1)抓住小球运动到最高点时.导管对地面的压力刚好为零,求出小球对导管的作用力,再隔离对小球分析,结合牛顿第二定律求出小球的速度.
(2)当小球在最低点时,根据牛顿第二定律求出支持力,从而得出小球对导轨的压力,得出导管对地面的压力.

解答 解:(1)当小球运动到最高点时.导管对地面的压力刚好为零,可知小球到达最高点时,对导管的弹力大小F=2mg,方向向上,
对小球分析,根据牛顿第二定律得,F+mg=$m\frac{{v}^{2}}{R}$,
解得v=$\sqrt{3gR}$.
(2)在最低点,对小球,根据牛顿第二定律得,N-mg=m$\frac{{{v}_{t}}^{2}}{R}$,解得N=8mg,
则小球对导管的作用力大小为8mg,方向向下,
所以导管对地面的压力FN=2mg+8mg=10mg.
答:(1)此时小球的速度为$\sqrt{3gR}$;
(2)导管对地面的压力为10mg.

点评 本题考查了牛顿第二定律和共点力平衡的综合运用,解决本题的关键知道小球在最高点和最低点向心力的来源,通过牛顿第二定律进行求解.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:计算题

16.如图所示,长L=0.4m的水平轨道BC左端与固定的光滑竖直圆轨道相切于B点,圆弧轨道的半径R=0.45m,BC右端与一倾角θ=30°的光滑固定斜面在C点平滑连接,斜面顶端固定一轻质弹簧.一质量m=2kg的滑块从圆弧轨道的顶端A点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次将弹簧压缩至D点时滑块速度减为0,此时弹簧具有的弹性势能EP=1.4J,已知滑块与水平轨道间的动摩擦因数μ=0.2,滑块可视为质点,重力加速度g=10m/s2 .求:
(1)滑块第一次经过圆轨道B点时对轨道的压力大小;
(2)光滑斜面轨道上CD的长度;
(3)滑块在BC上停止运动时距C点的距离.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

17.关于匀速圆周运动,下列说法正确的是(  )
A.匀速圆周运动就是匀速运动B.匀速圆周运动的加速度为零
C.匀速圆周运动一定是变速运动D.匀速圆周运动的线速度不变

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

4.如图所示,处于竖直平面内的平行光滑导轨置于足够长的有界匀强磁场中,磁感应强度大小为B=1.0T,质量M=0.1kg的金属杆ab垂直于导轨平面,在外力作用下以恒定的速度v沿导轨向左匀速运动,导轨宽度L=$\frac{1}{3}$m,电阻R1=R3=2Ω,R2=1Ω,导轨电阻不计,平行板电容器水平放置,板间距离d=10mm,内有一质量m=5×10-2kg,电量q=5×10-3C的小球.在开关S1闭合,S2断开时微粒处于静止状态;当S1、S2都闭合后微粒以a=$\frac{5}{9}$g的加速度匀加速向下运动(g=10m/s2).求:
(1)金属杆的电阻r和运动时产生的感应电动势E;
(2)S1、S2都闭合后某时刻撤去外力,同时断开S1、S2,从此刻到金属杆停下,金属杆产生的热量Qab及通过金属杆的电荷量q.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

11.如图所示,光滑绝缘的水平面上M、N两点各放一带电荷量分别为+q和+2q的完全相同的刚性金属球A和B,给A和B以大小相等的初动能E0(此时初动量的大小均为p0),使其相向运动一段距离后发生弹性正碰,碰后返回M、N两点的动能分别为E1和E2,动量的大小分别为p1和p2,则(  )
A.E1=E2=E0,p1=p2=p0B.E1=E2>E0,p1=p2>p0
C.碰撞发生在MN连线的中点D.碰撞发生在MN连线中点的左侧

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

1.如图所示,水平传送带沿顺时针方向匀速转动,速度v=6m/s.质量m=5kg的物体(可视为质点)无初速放置于左端A处的同时,用水平向右恒力F=20N拉物体,当物体与传送带达到共同速度时撤去力F.若物体与传送带间动摩擦因数μ=0.2,传送带足够长,g取10m/s2.求物体在整个运动过程中:
(1)恒力F做的功;
(2)摩擦力对传送带做的功.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

8.如图所示,圆形区域内存在垂直于圆面向里的匀强磁场,磁感应强度大小为B.A、C、D三点在圆上,O为圆心,且AD=AC=$\sqrt{3}$AO.带电粒子a从A点沿AO方向射入磁场,从D点离开磁场区域;带电粒子b从A点沿AO方向射入磁场,从C点离开磁场区域.已知粒子a的质量为m、电荷量为q(q>0),粒子a、b带等量异种电荷,且粒子b从A点射入磁场时的动能是粒子a从A点射入磁场时动能的2倍,不计粒子重力,求:
(1)粒子b的质量;
(2)粒子b在磁场中运动的时间.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

5.我国正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105N;弹射器有效作用长度为100m,推力恒定.要求舰载机在水平弹射结束时速度达到80m/s.已知弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则(  )
A.弹射器的推力大小为1.1×106N
B.弹射器对舰载机所做的功为1.1×108J
C.弹射器对舰载机做功的平均功率为8.8×107W
D.舰载机在弹射过程中的加速度大小为32m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

6.一质点在某段时间内做曲线运动,则在这段时间内(  )
A.速度一定在不断地改变,加速度可以不变
B.速度一定在不断地改变,加速度也一定在不断地改变
C.速度一定在不断地改变,加速度也可以在不断地改变
D.速度可以不变,加速度也一定在不断地改变

查看答案和解析>>

同步练习册答案