精英家教网 > 高中物理 > 题目详情
14.飞行器常用的动力系统推进器设计的简化原理如图1所示:截面半径为R的圆柱腔分别为两个工作区,Ⅰ为电离区,将氙气电离获得1价正离子.Ⅱ为加速区,长度为L,两端加有电压,形成轴向(水平)的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度vm从右侧喷出.
Ⅰ区内有轴向(水平)的匀强磁场,磁感应强度大小为B,在离轴线$\frac{R}{2}$处的C点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线(水平)的截面上运动,截面如图2所示(从左向右看).电子的初速度方向与中心〇点和C点的连线成α角(0<α<90°).
     推进器工作时,向I区注入稀薄的氙气.电子使氙气电离,电子的最小速度为v0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M;电子质量为m,电量为e,(电子碰到器壁即被吸收,不考虑电子间的碰撞).
(1)求Ⅱ区的加速电压及离子的加速度大小;
(2)为电子在Ⅰ区内不与器壁相碰且运动半径最大,请判断I区中的磁场方向(按图2 说明是“垂立纸面向里”或“垂直纸面向外”);
(3)α为90°时,要取得好的电离效果,求射出的电子速率的最大值;
(4)要取得好的电离效果,求射出的电子最大速率vm与α的关系.

分析 (1)粒子在区域Ⅱ中运动的过程中,只受电场力作用,电场力做正功,利用动能定理和运动学公式可解的加速电压和离子的加速度大小.
(2)因电子在I区内不与器壁相碰且能到达的区域越大,电离效果越好,所以可知电子应为逆时针转动,结合左手定则可知磁场的方向.
(3)通过几何关系分析出离子运功的最大轨道半径,洛伦兹力提供向心力,结合牛顿第二定律可计算出离子的最大速度.
(4)画出轨迹图,通过几何关系解出轨道的最大半径,再结合洛伦兹力提供向心力列式,即可得出射出的电子最大速率vM与α的关系.

解答 解:(1)离子在电场中加速,由动能定理得:eU=$\frac{1}{2}M{v}_{m}^{2}$
得:U=$\frac{M{v}_{m}^{2}}{2e}$
离子做匀加速直线运动,由运动学关系得:
${v}_{m}^{2}$=2aL
得:a=$\frac{{v}_{m}^{2}}{2L}$
(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.
(3)当α=90°时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,
此时圆周运动的半径为:r=$\frac{3}{4}$R
洛伦兹力提供向心力,有:Bevmax=m$\frac{{v}_{max}^{2}}{r}$
得:vmax=$\frac{3BeR}{4m}$
所以有:v0≤v≤$\frac{3BeR}{4m}$
此刻必须保证B>$\frac{4m{v}_{0}}{3eR}$
(4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,
此时有:∠OCO′=90°-α
OC=$\frac{R}{2}$,O′C=r,OO′=R-r,
由余弦定理有:(R-r)2=($\frac{R}{2}$)2+r2-2r•$\frac{R}{2}$•cos(90°-α)
cos(90°-α)=sinα
联立解得:r=$\frac{3R}{8-4sinα}$
再由:r=$\frac{m{v}_{M}}{eB}$
得:vM=$\frac{3eBR}{4m(2-sinα)}$.
答:(1)求Ⅱ区的加速电压为$\frac{M{v}_{M}^{2}}{2e}$,离子的加速度大小为$\frac{{v}_{M}^{2}}{2L}$;
(2)为取得好的电离效果,判断I区中的磁场方向是垂直纸面向外;
(3)α为90°时,要取得好的电离效果,求射出的电子速率的最大值为$\frac{3BeR}{4m}$;
(4)要取得好的电离效果,求射出的电子最大速率vm与a的关系为vM=$\frac{3eBR}{4m(2-sinα)}$.

点评 该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

4.物理学的发展丰富了人类对物质世界的认识,推动了科学技术的进步与创新.下列物理学发展史的表述中不符合历史事实的是(  )
A.麦克斯韦首先预言了电磁波的存在,赫兹通过实验加以了证实
B.奥斯特发现了通电导体在磁场中受力规律
C.托马斯﹒杨的双缝干涉实验证明了光具有波动性
D.法拉第发现了电磁感应现象

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

5.如图所示,A为静止于地球赤道上的物体,B为绕地球做椭圆轨道运行的卫星,C为绕地球做圆周运动的卫星,P为B、C两卫星轨道的交点.已知A、B、C绕地心运动的周期相同.相对于地心,下列说法中错误的是(  )
A.卫星B在P点的运行加速度大小与卫星C的运行加速度大小相等
B.卫星C的运行速度大于物体A的速度
C.物体A和卫星C具有相同大小的加速度
D.卫星B从远地点向近地点运行的过程中,速度越来越大,但加速度越来越小

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

2.东方红一号是我国于1970年4月24日首次成功发射的人造卫星,它至今在一椭圆轨道上运行,其轨道近地点高度约为440km,远地点高度约为2060km;而东方红二号卫星是1984年4月8日发射成功的,它运行在赤道上空35786km的地球同步轨道上,已知地球半径约为6400km;设固定在地球赤道上的物体随地球自转的线速度为v1,加速度为a1;东方红一号在近地点的速度为v2,加速度为a2,东方红二号的线速度为v3,加速度为a3,则关于它们的大小关系正确的是(  )
A.v2>v3>v1B.v1>v2>v3C.a3>a1>a2D.a2>a3>a1

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

9.下列关于节约用电的做法,正确的是(  )
A.买空调时,选择低能耗产品
B.电冰箱里面的食物冷冻后,关闭电源
C.看书时,不到完全看不见坚决不开灯
D.使用电热水器,而不是太阳能热水器

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

19.如图甲所示,水平面上的物体在水平向右的拉力F作用下,由静止开始运动,运动过程中F的功率恒为5W.物体运动速度的倒数$\frac{1}{v}$与加速度a的关系如图乙所示,下列说法正确的是(  )
A.物体做匀加速直线运动
B.物体加速运动过程中,相同时间速度变化量不相同
C.物体的质量为1kg
D.物体速度为1m/s时的加速度大小为3m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

2.如图所示,在绝缘光滑的水平面上,有一个边长为l的正方形线框,静止在图示位置,这时ab边与磁场左边界刚好重合,用一垂直于ab边的水平向右的恒力将正方形线框拉进磁感应强度为B的有界匀强磁场区域,cd边刚要进磁场时线框的加速度为零,这时线框的速率为v1、cd边刚进磁场时撤去拉力,线框最终停在右边界上某处,已知磁场方向竖直向下,宽度为5l,正方形线框每条边的电阻均为R,线框的质量为m,求:
(1)恒定外力的大小;
(2)线框进入磁场的过程中通过线框截面的电量q;
(3)整个过程中产生的焦耳热Q.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

19.如图所示,在直角三角形ABC内充满垂直纸面向外的匀强磁场(图中未画出),AB边长度为d,∠B=$\frac{π}{6}$.现垂直AB边射入一质量均为m、电荷量均为q、速度大小均为v的带正电粒子,已知垂直AC边射出的粒子在磁场中运动的时间为t0,而运动时间最长的粒子在磁场中的运动时间为$\frac{4}{3}$t0(不计重力).则下列判断中正确的是(  )
A.粒子在磁场中做匀速圆周运动的周期为4t0
B.该匀强磁场的磁感应强度大小为$\frac{πm}{2q{t}_{0}}$
C.粒子在磁场中运动的轨道半径为$\frac{2}{5}$d
D.粒子进入磁场时速度大小为$\frac{\sqrt{3}πd}{7{t}_{0}}$

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

20.质量为m的汽车在平直路面上启动,启动过程的速度图象如图所示,从t1时刻起汽车的功率保持不变,整个运动过程中汽车所受阻力恒为Ff,则(  )
A.0~t1时间内,汽车的平均速度等于$\frac{{v}_{1}}{2}$
B.0~t1时间内,汽车的牵引力等于m$\frac{{v}_{1}}{{t}_{1}}$
C.t1~t2时间内,汽车的功率等于(m$\frac{{v}_{1}}{{t}_{1}}$+Ff)v1
D.汽车运动的过程中最大速度v2=$\frac{m{{v}_{1}}^{2}}{{F}_{f}{t}_{1}}$

查看答案和解析>>

同步练习册答案