如图15所示,三个物体质量分别为m1 、m2和m3 ,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?
解说:此题对象虽然有三个,但难度不大。隔离m2 ,竖直方向有一个平衡方程;隔离m1 ,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。
科目:高中物理 来源: 题型:
如图1-2-15所示,一个固定平面上的光滑物块,其左侧是斜面AB,右侧是曲面AC,已知AB和AC的长度相同,甲、乙两个小球同时从A点分别沿AB、CD由静止开始下滑,设甲在斜面上运动的时间为t1,乙在曲面上运动的时间为t2,则( )
A.t1>t2
B.t1<t2
C.t1=t2
D.以上三种均可能
查看答案和解析>>
科目:高中物理 来源: 题型:阅读理解
第Ⅰ卷(选择题 共31分)
一、单项选择题.本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意.
1. 关于科学家和他们的贡献,下列说法中正确的是[来源:Www..com]
A.安培首先发现了电流的磁效应
B.伽利略认为自由落体运动是速度随位移均匀变化的运动
C.牛顿发现了万有引力定律,并计算出太阳与地球间引力的大小
D.法拉第提出了电场的观点,说明处于电场中电荷所受到的力是电场给予的
2.如图为一种主动式光控报警器原理图,图中R1和R2为光敏电阻,R3和R4为定值电阻.当射向光敏电阻R1和R2的任何一束光线被遮挡时,都会引起警铃发声,则图中虚线框内的电路是
A.与门 B.或门 C.或非门 D.与非门
3.如图所示的交流电路中,理想变压器原线圈输入电压为U1,输入功率为P1,输出功率为P2,各交流电表均为理想电表.当滑动变阻器R的滑动头向下移动时
A.灯L变亮 B.各个电表读数均变大
C.因为U1不变,所以P1不变 D.P1变大,且始终有P1= P2
4.竖直平面内光滑圆轨道外侧,一小球以某一水平速度v0从A点出发沿圆轨道运动,至B点时脱离轨道,最终落在水平面上的C点,不计空气阻力.下列说法中不正确的是
A.在B点时,小球对圆轨道的压力为零
B.B到C过程,小球做匀变速运动
C.在A点时,小球对圆轨道压力大于其重力
D.A到B过程,小球水平方向的加速度先增加后减小
5.如图所示,水平面上放置质量为M的三角形斜劈,斜劈顶端安装光滑的定滑轮,细绳跨过定滑轮分别连接质量为m1和m2的物块.m1在斜面上运动,三角形斜劈保持静止状态.下列说法中正确的是
A.若m2向下运动,则斜劈受到水平面向左摩擦力
B.若m1沿斜面向下加速运动,则斜劈受到水平面向右的摩擦力
C.若m1沿斜面向下运动,则斜劈受到水平面的支持力大于(m1+ m2+M)g
D.若m2向上运动,则轻绳的拉力一定大于m2g
二、多项选择题.本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分.
6.木星是太阳系中最大的行星,它有众多卫星.观察测出:木星绕太阳作圆周运动的半径为r1、 周期为T1;木星的某一卫星绕木星作圆周运动的半径为r2、 周期为T2.已知万有引力常量为G,则根据题中给定条件
A.能求出木星的质量
B.能求出木星与卫星间的万有引力
C.能求出太阳与木星间的万有引力
D.可以断定
7.如图所示,xOy坐标平面在竖直面内,x轴沿水平方向,y轴正方向竖直向上,在图示空间内有垂直于xOy平面的水平匀强磁场.一带电小球从O点由静止释放,运动轨迹如图中曲线.关于带电小球的运动,下列说法中正确的是
A.OAB轨迹为半圆
B.小球运动至最低点A时速度最大,且沿水平方向
C.小球在整个运动过程中机械能守恒
D.小球在A点时受到的洛伦兹力与重力大小相等
8.如图所示,质量为M、长为L的木板置于光滑的水平面上,一质量为m的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为f,用水平的恒定拉力F作用于滑块.当滑块运动到木板右端时,木板在地面上移动的距离为s,滑块速度为v1,木板速度为v2,下列结论中正确的是
A.上述过程中,F做功大小为
B.其他条件不变的情况下,F越大,滑块到达右端所用时间越长
C.其他条件不变的情况下,M越大,s越小
D.其他条件不变的情况下,f越大,滑块与木板间产生的热量越多
9.如图所示,两个固定的相同细环相距一定的距离,同轴放置,O1、O2分别为两环的圆心,两环分别带有均匀分布的等量异种电荷.一带正电的粒子从很远处沿轴线飞来并穿过两环.则在带电粒子运动过程中
A.在O1点粒子加速度方向向左
B.从O1到O2过程粒子电势能一直增加
C.轴线上O1点右侧存在一点,粒子在该点动能最小
D.轴线上O1点右侧、O2点左侧都存在场强为零的点,它们关于O1、O2连线中点对称
第Ⅱ卷(非选择题 共89分)
三、简答题:本题分必做题(第lO、11题)和选做题(第12题)两部分,共计42分.请将解答填写在答题卡相应的位置.
必做题
10.测定木块与长木板之间的动摩擦因数时,采用如图所示的装置,图中长木板水平固定.
(1)实验过程中,电火花计时器应接在 ▲ (选填“直流”或“交流”)电源上.调整定滑轮高度,使 ▲ .
(2)已知重力加速度为g,测得木块的质量为M,砝码盘和砝码的总质量为m,木块的加速度为a,则木块与长木板间动摩擦因数μ= ▲ .
(3)如图为木块在水平木板上带动纸带运动打出的一条纸带的一部分,0、1、2、3、4、5、6为计数点,相邻两计数点间还有4个打点未画出.从纸带上测出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.则木块加速度大小a= ▲ m/s2(保留两位有效数字).
11.为了测量某电池的电动势 E(约为3V)和内阻 r,可供选择的器材如下:
A.电流表G1(2mA 100Ω) B.电流表G2(1mA 内阻未知)
C.电阻箱R1(0~999.9Ω) D.电阻箱R2(0~9999Ω)
E.滑动变阻器R3(0~10Ω 1A) F.滑动变阻器R4(0~1000Ω 10mA)
G.定值电阻R0(800Ω 0.1A) H.待测电池
I.导线、电键若干
(1)采用如图甲所示的电路,测定电流表G2的内阻,得到电流表G1的示数I1、电流表G2的示数I2如下表所示:
I1(mA) | 0.40 | 0.81 | 1.20 | 1.59 | 2.00 |
I2(mA) | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 |
根据测量数据,请在图乙坐标中描点作出I1—I2图线.由图得到电流表G2的内阻等于
▲ Ω.
(2)在现有器材的条件下,测量该电池电动势和内阻,采用如图丙所示的电路,图中滑动变阻器①应该选用给定的器材中 ▲ ,电阻箱②选 ▲ (均填写器材代号).
(3)根据图丙所示电路,请在丁图中用笔画线代替导线,完成实物电路的连接.
12.选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)
A.(选修模块3-3)(12分)
(1)下列说法中正确的是 ▲
A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力
B.扩散运动就是布朗运动
C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体
D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述
(2)将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是 ▲ m(保留一位有效数字).
(3)如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g.
①求活塞停在B点时缸内封闭气体的压强;
②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).
B.(选修模块3-4)(12分)
(1)下列说法中正确的是 ▲
A.照相机、摄影机镜头表面涂有增透膜,利用了光的干涉原理
B.光照射遮挡物形成的影轮廓模糊,是光的衍射现象
C.太阳光是偏振光
D.为了有效地发射电磁波,应该采用长波发射
(2)甲、乙两人站在地面上时身高都是L0, 甲、乙分别乘坐速度为0.6c和0.8c(c为光速)的飞船同向运动,如图所示.此时乙观察到甲的身高L ▲ L0;若甲向乙挥手,动作时间为t0,乙观察到甲动作时间为t1,则t1 ▲ t0(均选填“>”、“ =” 或“<”).
(3)x=0的质点在t=0时刻开始振动,产生的波沿x轴正方向传播,t1=0.14s时刻波的图象如图所示,质点A刚好开始振动.
①求波在介质中的传播速度;
②求x=4m的质点在0.14s内运动的路程.
C.(选修模块3-5)(12分)
(1)下列说法中正确的是 ▲
A.康普顿效应进一步证实了光的波动特性
B.为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的
C.经典物理学不能解释原子的稳定性和原子光谱的分立特征
D.天然放射性元素衰变的快慢与化学、物理状态有关
(2)是不稳定的,能自发的发生衰变.
①完成衰变反应方程 ▲ .
②衰变为,经过 ▲ 次α衰变, ▲ 次β衰变.
(3)1919年,卢瑟福用α粒子轰击氮核发现质子.科学研究表明其核反应过程是:α粒子轰击静止的氮核后形成了不稳定的复核,复核发生衰变放出质子,变成氧核.设α粒子质量为m1,初速度为v0,氮核质量为m2,质子质量为m0, 氧核的质量为m3,不考虑相对论效应.
①α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为多大?
②求此过程中释放的核能.
四、计算题:本题共3小题,共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.
13.如图所示,一质量为m的氢气球用细绳拴在地面上,地面上空风速水平且恒为v0,球静止时绳与水平方向夹角为α.某时刻绳突然断裂,氢气球飞走.已知氢气球在空气中运动时所受到的阻力f正比于其相对空气的速度v,可以表示为f=kv(k为已知的常数).则
(1)氢气球受到的浮力为多大?
(2)绳断裂瞬间,氢气球加速度为多大?
(3)一段时间后氢气球在空中做匀速直线运动,其水平方向上的速度与风速v0相等,求此时气球速度大小(设空气密度不发生变化,重力加速度为g).
14.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区.
(1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时ab两点间的电势差;
(2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率;
(3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间T,cd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t.
15.如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心O到MN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e.
(1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大?
(2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).
(3)在(2)的情况下,求金属圆筒的发热功率.
查看答案和解析>>
科目:高中物理 来源: 题型:
如图1-2-15所示,一个固定平面上的光滑物块,其左侧是斜面AB,右侧是曲面AC,已知AB和AC的长度相同,甲、乙两个小球同时从A点分别沿AB、CD由静止开始下滑,设甲在斜面上运动的时间为t1,乙在曲面上运动的时间为t2,则( )
A.t1>t2
B.t1<t2
C.t1=t2
D.以上三种均可能
查看答案和解析>>
科目:高中物理 来源:2010-2011学年陕西省高三上学期第一次月考物理卷(B) 题型:选择题
如图1-2-15所示,一个固定平面上的光滑物块,其左侧是斜面AB,右侧是曲面AC,已知AB和AC的长度相同,甲、乙两个小球同时从A点分别沿AB、CD由静止开始下滑,设甲在斜面上运动的时间为t1,乙在曲面上运动的时间为t2,则( )
A.t1>t2
B.t1<t2
C.t1=t2
D.以上三种均可能
查看答案和解析>>
科目:高中物理 来源: 题型:阅读理解
第二部分 牛顿运动定律
第一讲 牛顿三定律
一、牛顿第一定律
1、定律。惯性的量度
2、观念意义,突破“初态困惑”
二、牛顿第二定律
1、定律
2、理解要点
a、矢量性
b、独立作用性:ΣF → a ,ΣFx → ax …
c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。
3、适用条件
a、宏观、低速
b、惯性系
对于非惯性系的定律修正——引入惯性力、参与受力分析
三、牛顿第三定律
1、定律
2、理解要点
a、同性质(但不同物体)
b、等时效(同增同减)
c、无条件(与运动状态、空间选择无关)
第二讲 牛顿定律的应用
一、牛顿第一、第二定律的应用
单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。
应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。
1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中( )
A、一段时间内,工件将在滑动摩擦力作用下,对地做加速运动
B、当工件的速度等于v时,它与皮带之间的摩擦力变为静摩擦力
C、当工件相对皮带静止时,它位于皮带上A点右侧的某一点
D、工件在皮带上有可能不存在与皮带相对静止的状态
解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。
较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t → 0 ,a → ∞ ,则ΣFx → ∞ ,必然会出现“供不应求”的局面)和比较法(为什么人跳上速度不大的物体可以不发生相对滑动?因为人是可以形变、重心可以调节的特殊“物体”)
此外,本题的D选项还要用到匀变速运动规律。用匀变速运动规律和牛顿第二定律不难得出
只有当L > 时(其中μ为工件与皮带之间的动摩擦因素),才有相对静止的过程,否则没有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,试求工件到达皮带右端的时间t(过程略,答案为5.5s)
进阶练习:在上面“思考”题中,将工件给予一水平向右的初速v0 ,其它条件不变,再求t(学生分以下三组进行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、质量均为m的两只钩码A和B,用轻弹簧和轻绳连接,然后挂在天花板上,如图2所示。试问:
① 如果在P处剪断细绳,在剪断瞬时,B的加速度是多少?
② 如果在Q处剪断弹簧,在剪断瞬时,B的加速度又是多少?
解说:第①问是常规处理。由于“弹簧不会立即发生形变”,故剪断瞬间弹簧弹力维持原值,所以此时B钩码的加速度为零(A的加速度则为2g)。
第②问需要我们反省这样一个问题:“弹簧不会立即发生形变”的原因是什么?是A、B两物的惯性,且速度v和位移s不能突变。但在Q点剪断弹簧时,弹簧却是没有惯性的(没有质量),遵从理想模型的条件,弹簧应在一瞬间恢复原长!即弹簧弹力突变为零。
答案:0 ;g 。
二、牛顿第二定律的应用
应用要点:受力较少时,直接应用牛顿第二定律的“矢量性”解题。受力比较多时,结合正交分解与“独立作用性”解题。
在难度方面,“瞬时性”问题相对较大。
1、滑块在固定、光滑、倾角为θ的斜面上下滑,试求其加速度。
解说:受力分析 → 根据“矢量性”定合力方向 → 牛顿第二定律应用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,倾角仍为θ,要求滑块与斜面相对静止,斜面应具备一个多大的水平加速度?(解题思路完全相同,研究对象仍为滑块。但在第二环节上应注意区别。答:gtgθ。)
进阶练习1:在一向右运动的车厢中,用细绳悬挂的小球呈现如图3所示的稳定状态,试求车厢的加速度。(和“思考”题同理,答:gtgθ。)
进阶练习2、如图4所示,小车在倾角为α的斜面上匀加速运动,车厢顶用细绳悬挂一小球,发现悬绳与竖直方向形成一个稳定的夹角β。试求小车的加速度。
解:继续贯彻“矢量性”的应用,但数学处理复杂了一些(正弦定理解三角形)。
分析小球受力后,根据“矢量性”我们可以做如图5所示的平行四边形,并找到相应的夹角。设张力T与斜面方向的夹角为θ,则
θ=(90°+ α)- β= 90°-(β-α) (1)
对灰色三角形用正弦定理,有
= (2)
解(1)(2)两式得:ΣF =
最后运用牛顿第二定律即可求小球加速度(即小车加速度)
答: 。
2、如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。
解说:当力的个数较多,不能直接用平行四边形寻求合力时,宜用正交分解处理受力,在对应牛顿第二定律的“独立作用性”列方程。
正交坐标的选择,视解题方便程度而定。
解法一:先介绍一般的思路。沿加速度a方向建x轴,与a垂直的方向上建y轴,如图7所示(N为斜面支持力)。于是可得两方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上两式成为
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
这是一个关于T和N的方程组,解(1)(2)两式得:T = mgsinθ + ma cosθ
解法二:下面尝试一下能否独立地解张力T 。将正交分解的坐标选择为:x——斜面方向,y——和斜面垂直的方向。这时,在分解受力时,只分解重力G就行了,但值得注意,加速度a不在任何一个坐标轴上,是需要分解的。矢量分解后,如图8所示。
根据独立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
显然,独立解T值是成功的。结果与解法一相同。
答案:mgsinθ + ma cosθ
思考:当a>ctgθ时,张力T的结果会变化吗?(从支持力的结果N = mgcosθ-ma sinθ看小球脱离斜面的条件,求脱离斜面后,θ条件已没有意义。答:T = m 。)
学生活动:用正交分解法解本节第2题“进阶练习2”
进阶练习:如图9所示,自动扶梯与地面的夹角为30°,但扶梯的台阶是水平的。当扶梯以a = 4m/s2的加速度向上运动时,站在扶梯上质量为60kg的人相对扶梯静止。重力加速度g = 10 m/s2,试求扶梯对人的静摩擦力f 。
解:这是一个展示独立作用性原理的经典例题,建议学生选择两种坐标(一种是沿a方向和垂直a方向,另一种是水平和竖直方向),对比解题过程,进而充分领会用牛顿第二定律解题的灵活性。
答:208N 。
3、如图10所示,甲图系着小球的是两根轻绳,乙图系着小球的是一根轻弹簧和轻绳,方位角θ已知。现将它们的水平绳剪断,试求:在剪断瞬间,两种情形下小球的瞬时加速度。
解说:第一步,阐明绳子弹力和弹簧弹力的区别。
(学生活动)思考:用竖直的绳和弹簧悬吊小球,并用竖直向下的力拉住小球静止,然后同时释放,会有什么现象?原因是什么?
结论——绳子的弹力可以突变而弹簧的弹力不能突变(胡克定律)。
第二步,在本例中,突破“绳子的拉力如何瞬时调节”这一难点(从即将开始的运动来反推)。
知识点,牛顿第二定律的瞬时性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
应用:如图11所示,吊篮P挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳被烧断瞬间,P、Q的加速度分别是多少?
解:略。
答:2g ;0 。
三、牛顿第二、第三定律的应用
要点:在动力学问题中,如果遇到几个研究对象时,就会面临如何处理对象之间的力和对象与外界之间的力问题,这时有必要引进“系统”、“内力”和“外力”等概念,并适时地运用牛顿第三定律。
在方法的选择方面,则有“隔离法”和“整体法”。前者是根本,后者有局限,也有难度,但常常使解题过程简化,使过程的物理意义更加明晰。
对N个对象,有N个隔离方程和一个(可能的)整体方程,这(N + 1)个方程中必有一个是通解方程,如何取舍,视解题方便程度而定。
补充:当多个对象不具有共同的加速度时,一般来讲,整体法不可用,但也有一种特殊的“整体方程”,可以不受这个局限(可以介绍推导过程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系统外力的矢量和,等式右边也是矢量相加。
1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?
解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。
答案:N = x 。
思考:如果水平面粗糙,结论又如何?
解:分两种情况,(1)能拉动;(2)不能拉动。
第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。
第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μMg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。
答:若棒仍能被拉动,结论不变。
若棒不能被拉动,且F = μMg时(μ为棒与平面的摩擦因素,l为小于L的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N = 〔x -〈L-l〉〕。
应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2 ,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2 ,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?
解:略。
答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。
2、如图15所示,三个物体质量分别为m1 、m2和m3 ,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?
解说:
此题对象虽然有三个,但难度不大。隔离m2 ,竖直方向有一个平衡方程;隔离m1 ,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。
答案:F = 。
思考:若将质量为m3物体右边挖成凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。
解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:
= m2a
隔离m1 ,仍有:T = m1a
解以上两式,可得:a = g
最后用整体法解F即可。
答:当m1 ≤ m2时,没有适应题意的F′;当m1 > m2时,适应题意的F′= 。
3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?
解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。
法二,“新整体法”。
据Σ= m1 + m2 + m3 + … + mn ,猫和棒的系统外力只有两者的重力,竖直向下,而猫的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的连接体
当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。
解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、
1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。
解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。
(学生活动)定型判断斜面的运动情况、滑块的运动情况。
位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。
(学生活动)这两个加速度矢量有什么关系?
沿斜面方向、垂直斜面方向建x 、y坐标,可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔离滑块和斜面,受力图如图20所示。
对滑块,列y方向隔离方程,有:
mgcosθ- N = ma1y ③
对斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(学生活动)思考:如何求a1的值?
解:a1y已可以通过解上面的方程组求出;a1x只要看滑块的受力图,列x方向的隔离方程即可,显然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后据a1 = 求a1 。
答:a1 = 。
2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。
解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。
(学生活动)思考:为什么题意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)
定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:
S1x + b = S cosθ ①
设全程时间为t ,则有:
S = at2 ②
S1x = a1xt2 ③
而隔离滑套,受力图如图23所示,显然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引进动力学在非惯性系中的修正式 Σ+ * = m (注:*为惯性力),此题极简单。过程如下——
以棒为参照,隔离滑套,分析受力,如图24所示。
注意,滑套相对棒的加速度a相是沿棒向上的,故动力学方程为:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒为参照,滑套的相对位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二讲 配套例题选讲
教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。
例题选讲针对“教材”第三章的部分例题和习题。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com