分析 (1)电子在加速电场中加速,在偏转电场中类平抛运动,应用动能定理与匀速运动公式可以求出板长.
(2)电子在偏转电场中前半个周期内做类平抛运动,应用类平抛运动规律可以求出最大偏移量.
(3)粒子在磁场中做匀速圆周运动洛伦兹力提供向心力,应用牛顿第二定律求出磁感应强度的临界值,然后确定磁感应强度的范围.
解答 解:(1)电子在电场中加速,由动能定理得:eU1=$\frac{1}{2}$mv02-0,
水平导体板的板长:l0=v0T,
解得:l0=$\frac{\sqrt{3}e{U}_{0}{T}^{2}}{2md}$;
(2)电子在偏转电场中半个周期的时间内做类平抛运动,
半个周期的位移:y1=$\frac{1}{2}$$\frac{e{U}_{0}}{md}$($\frac{T}{2}$)2,
电子离开偏转电场时的最大侧向位移为:ym=3y1=$\frac{3e{U}_{0}{T}^{2}}{8md}$;
(3)电子离开偏转电场时速度与水平方向夹角为θ,
tanθ=$\frac{{v}_{y}}{{v}_{0}}$=$\frac{a×\frac{T}{2}}{{v}_{0}}$=$\frac{\frac{e{U}_{0}}{md}×T}{2{v}_{0}}$=$\frac{e{U}_{0}T}{2m{v}_{0}d}$=$\frac{\sqrt{3}}{3}$,
故速度与水平方向夹角:θ=30°,
电子进入磁场做匀速圆周运动,洛伦兹力提供向心力,
由牛顿第二定律得:qvB=m$\frac{{v}^{2}}{r}$,其中:v=$\frac{{v}_{0}}{cosθ}$,
垂直打在屏上时圆周运动半径为R1,此时B有最小值,r1sinθ=l,
轨迹与屏相切时圆周运动半径为R2,此时B有最大值,r2sinθ+r2=l,
解得:B1=$\frac{{U}_{0}T}{2ld}$,B2=$\frac{3{U}_{0}T}{2ld}$,故:$\frac{{U}_{0}T}{2ld}$<B<$\frac{3{U}_{0}T}{2ld}$;
答:(1)水平导体板的板长l0为$\frac{\sqrt{3}e{U}_{0}{T}^{2}}{2md}$;
(2)电子离开偏转电场时的最大侧向位移ym为$\frac{3e{U}_{0}{T}^{2}}{8md}$;
(3)要使电子打在荧光屏上的速度方向斜向右下方,磁感应强度B的取值范围是:$\frac{{U}_{0}T}{2ld}$<B<$\frac{3{U}_{0}T}{2ld}$.
点评 本题考查了电子在电场与磁场中的运动,分析清楚电子的运动过程是解题的前提与关键,分析清楚电子运动过程后由于动能定理、类平抛运动规律、牛顿第二定律可以解题;解题时要注意作出电子在磁场中的运动轨迹、求出电子临界轨道半径.
科目:高中物理 来源: 题型:解答题
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | X=X′ | B. | X>X′ | C. | X<X′ | D. | 无法判断 |
查看答案和解析>>
科目:高中物理 来源: 题型:计算题
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | 若粒子是从A运动到B,则粒子带正电 | |
B. | 粒子一定带负电 | |
C. | 若粒子是从B运动到A,则其速度减小 | |
D. | 若粒子是从B运动到A,则其加速度增大 |
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | 4N | B. | 7N | C. | 9N | D. | 12N |
查看答案和解析>>
科目:高中物理 来源: 题型:多选题
A. | E1=E2=E0,p1=p2=p0 | B. | E1=E2>E0,p1=p2>p0 | ||
C. | 碰撞发生在 M、N 中点的左侧 | D. | 两球同时返回 M、N 两点 |
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | P受到3个力的作用,Q受4个力的作用. | |
B. | P受到2个力的作用,Q受5个力的作用. | |
C. | P受到3个力的作用,Q受5个力的作用. | |
D. | 以上说法均不对. |
查看答案和解析>>
科目:高中物理 来源: 题型:计算题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com