9£®ÈçͼËùʾ£¬xOyΪֱ½Ç×ø±êϵ£¬ÔÚ-d¡Üx¡Ü0·¶Î§ÄÚÓÐÑØ+y·½ÏòµÄÔÈÇ¿µç³¡£¬³¡Ç¿´óСΪE£»ÔÚx¡Ü-dºÍx¡Ý0·¶È¦ÄÚÓз½Ïò¾ù´¹Ö±ÓÚxOyƽÃæÏòÀïµÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶È´óС¾ùΪB£®Ò»´øÕýµçµÄÁ£×Ó´Ó£¨-d£¬0£©´¦ÑØxÖáÕý·½ÏòÒÔËÙ¶ÈV0ÉäÈëµç³¡£¬´ÓyÖáÉϵÄP1£¨0£¬$\frac{d}{2}$£©µãµÚÒ»´ÎÀ뿪µç³¡£¬´ÓyÖáÉϵÄM1£¨0£¬d£©µãµÚ¶þ´Î½øÈëµç³¡£®²»¼ÆÁ£×ÓµÄÖØÁ¦£®Çó

£¨1£©µç³¡Ç¿¶ÈEºÍ´Å¸ÐӦǿ¶ÈBµÄ±ÈÖµ£»
£¨2£©Á£×ÓµÚ3´ÎÔÚÓÒ²à´Å³¡£¨x¡Ý0£©Ô˶¯µÄ¹ý³ÌÖУ¬µ½yÖáµÄ×îÔ¶¾àÀ룮

·ÖÎö £¨1£©ÓÉÀàƽÅ×Ô˶¯µÃµ½Á£×ÓÔڵ糡ÖеÄÔ˶¯¹æÂÉ£¬µÃµ½µç³¡³¡Ç¿µÄ±í´ïʽ£»ÔÙÓÉÁ£×ÓÔڴų¡ÖеÄÔ˶¯£¬Ôڱ߽紦µÃ¶Ô³ÆÐԵõ½´Å¸ÐӦǿ¶ÈµÄ±í´ïʽ£»
£¨2£©·ÖÎöÁ£×ÓµÄÔ˶¯Çé¿ö£¬½«Á£×ÓµÄÔ˶¯·Ö½â£¬ÇóµÃÁ£×ÓÔÚµÚÈý´Î½øÈëÓÒ²à´Å³¡Ê±µÄËٶȴóС¼°·½Ïò£»¸ù¾Ý´øµçÁ£×ÓÔڴų¡ÖеÄÔ˶¯¹æÂɼ°Á£×Óµ½yÖá×îÔ¶¾àÀëʱµÄÔ˶¯Î»Öýø¶øÇó½â¾àÀ룮

½â´ð ½â£º£¨1£©Á£×ÓÔڵ糡ÖÐÊܵ½ÊúÖ±ÏòÉϵĵ糡Á¦F=qE£¬¼ÓËÙ¶È$a=\frac{F}{m}=\frac{qE}{m}$£»
Á£×Ó´ÓyÖáÉϵÄ${P}_{1}£¨0£¬\frac{d}{2}£©$µãµÚÒ»´ÎÀ뿪µç³¡£¬ÔòÓУº$\frac{d}{2}=\frac{1}{2}¡Á\frac{qE}{m}¡Á£¨\frac{d}{{v}_{0}}£©^{2}$£¬ËùÒÔ£¬$E=\frac{m{{v}_{0}}^{2}}{qd}$£»
ÉèÁ£×ÓµÚÒ»´Î½øÈë´Å³¡Ê±µÄËÙ¶ÈΪv£¬ÔòvµÄˮƽ·ÖÁ¿vx=v0£¬ÊúÖ±·ÖÁ¿${v}_{y}=at=\frac{qEd}{m{v}_{0}}$=v0£¬ËùÒÔ$v=\sqrt{2}{v}_{0}$£»
Á£×ÓÔڴų¡ÖÐÔ˶¯£¬ÂåÂ××ÈÁ¦×÷ΪÏòÐÄÁ¦£¬$Bvq=\frac{m{v}^{2}}{R}$£¬Ôò$B=\frac{mv}{qR}$£»
ÓÉËÙ¶ÈvµÄ·½Ïò¿ÉÖª£¬¡ÏM1P1Q=45¡ã£¬£¬
ÓÖÓÉÔ²»¡ÉÏÈÎÒâÁ½µãµÄ¶Ô³ÆÐÔ¿ÉÖª£¬$R=\frac{\frac{1}{2}{M}_{1}{P}_{1}}{cos¡Ï{M}_{1}{P}_{1}Q}=\frac{\frac{1}{2}¡Á\frac{1}{2}d}{\frac{\sqrt{2}}{2}}=\frac{\sqrt{2}}{4}d$£¬
ËùÒÔ£¬$B=\frac{mv}{qR}=\frac{\sqrt{2}m{v}_{0}}{\frac{\sqrt{2}}{4}qd}=\frac{4m{v}_{0}}{qd}$£¬
ËùÒÔ£¬$\frac{E}{B}=\frac{\frac{m{{v}_{0}}^{2}}{qd}}{\frac{4m{v}_{0}}{qd}}=\frac{{v}_{0}}{4}$£»
£¨2£©ÓÉÁ£×Ó×öÔ²ÖÜÔ˶¯µÄ¶Ô³ÆÐÔ¿ÉÖª£¬ÈôÁ£×Ó½øÈë´Å³¡Ê±´¹Ö±±ß½çµÄËٶȷÖÁ¿Îªv1£¬Æ½Ðб߽çµÄËٶȷÖÁ¿Îªv2£¬ÔòÁ£×ÓÀ뿪´Å³¡Ê±£¬v1·´Ïò£¬v2²»±ä£»
Á£×ÓÔڵ糡ÖÐÖ»Êܵ糡Á¦£¬ÔòÁ£×Ó×öÀàƽÅ×Ô˶¯£»
ËùÒÔ£¬Á£×ÓµÚ3´Î½øÈëÓÒ²à´Å³¡£¨x¡Ý0£©Ê±£¬ËٶȵÄˮƽ·ÖÁ¿v3x=v0£¬
ÊúÖ±·½ÏòµÄËٶȾ­¹ý´Å³¡Ã»Óиı䣬Ôڵ糡ÖмÓËٶȲ»±ä£¬Á£×Ó¾­¹ý5´Îµç³¡²ÅµÚ3´Î½øÈëÓÒ²à´Å³¡£¨x¡Ý0£©£¬Ã¿´Î¾­¹ýµç³¡µÄʱ¼ä¶¼Ïàͬ£¬
ËùÒÔ£¬${v}_{3y}=5at=5¡Á\frac{qE}{m}¡Á\frac{d}{{v}_{0}}=\frac{5qEd}{m{v}_{0}}=5{v}_{0}$£»
ËùÒÔ£¬${v}_{3}=\sqrt{{{v}_{3x}}^{2}+{{v}_{3y}}^{2}}=\sqrt{26}{v}_{0}$£¬$r=\frac{m{v}_{3}}{Bq}=\frac{\sqrt{26}}{4}d$£»
ÓÉv3µÄ·½Ïò¿ÉµÃÁ£×ÓÔڴų¡ÖÐÈçͼËùʾÔ˶¯£¬£¬
Á£×ÓÔÚMµãÓëƽÐÐÓÚyÖáµÄÖ±ÏßÏàÇУ¬ËùÒÔ£¬MµãΪÁ£×ÓµÚ3´ÎÔÚÓÒ²à´Å³¡£¨x¡Ý0£©Ô˶¯µÄ¹ý³ÌÖУ¬µ½yÖáµÄ×îÔ¶¾àÀëNM£¬
ÓÖÓÐ$tan¦È=\frac{{v}_{3x}}{{v}_{3y}}=\frac{1}{5}$£¬ËùÒÔ£¬$cos¦È=\frac{5\sqrt{26}}{26}$£¬NM=O¡äM-O¡äN=r-rcos¦È=r£¨1-cos¦È£©=$\frac{\sqrt{26}}{4}d¡Á£¨1-\frac{5\sqrt{26}}{26}£©=\frac{\sqrt{26}-5}{4}d$£»
´ð£º£¨1£©µç³¡Ç¿¶ÈEºÍ´Å¸ÐӦǿ¶ÈBµÄ±ÈֵΪ$\frac{{v}_{0}}{4}$£»
£¨2£©Á£×ÓµÚ3´ÎÔÚÓÒ²à´Å³¡£¨x¡Ý0£©Ô˶¯µÄ¹ý³ÌÖУ¬µ½yÖáµÄ×îÔ¶¾àÀëΪ$\frac{\sqrt{26}-5}{4}d$£®

µãÆÀ ÔÚ´øµçÁ£×Ó½ø³ö´Å³¡µÄÎÊÌâÉÏ£¬¿ÉÒÔ³ä·ÖÀûÓöԳÆÐÔÇó½â£¬ÈôÁ£×Ó½øÈë´Å³¡Ê±´¹Ö±±ß½çµÄËٶȷÖÁ¿Îªv1£¬Æ½Ðб߽çµÄËٶȷÖÁ¿Îªv2£¬ÔòÁ£×ÓÀ뿪´Å³¡Ê±£¬v1·´Ïò£¬v2²»±ä£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

19£®ÔÚÈçͼËùʾµÄµç·ÖУ¬ÊäÈëµçѹUºãΪ8V£¬µÆÅÝL±êÓС°3V¡¡6W¡±×ÖÑù£¬µç¶¯»úÏßȦµÄµç×èRM=1¦¸£®ÈôµÆÅÝÇ¡ÄÜÕý³£·¢¹â£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®µç¶¯»úµÄÊäÈëµçѹÊÇ5 VB£®µç¶¯»úµÄЧÂÊÊÇ80%
C£®Í¨¹ýµç¶¯»úµÄµçÁ÷ÊÇ2 AD£®Õû¸öµç·ÏûºÄµÄµç¹¦ÂÊÊÇ16 W

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

20£®Èçͼ£¨a£©Ëùʾ£¬Á½¸ö±ÕºÏÔ²ÐÎÏßȦA¡¢BµÄÔ²ÐÄÖغϣ¬·ÅÔÚͬһˮƽÃæÄÚ£¬ÏßȦAÖÐͨÒÔÈçͼ£¨b£©ËùʾµÄ½»±äµçÁ÷£¬t=0ʱµçÁ÷·½ÏòΪ˳ʱÕ루Èçͼ¼ýÍ·Ëùʾ£©ÔÚt1-t2ʱ¼ä¶ÎÄÚ£¬¶ÔÓÚÏßȦB£¬ÏÂÁÐ˵·¨ÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®ÏßȦBÄÚÓÐ˳ʱÕë·½ÏòµÄµçÁ÷£¬ÏßȦÓÐÀ©ÕŵÄÇ÷ÊÆ
B£®ÏßȦBÄÚÓÐ˳ʱÕë·½ÏòµÄµçÁ÷£¬ÏßȦÓÐÊÕËõµÄÇ÷ÊÆ
C£®ÏßȦBÄÚÓÐÄæʱÕë·½ÏòµÄµçÁ÷£¬ÏßȦÓÐÀ©ÕŵÄÇ÷ÊÆ
D£®ÏßȦBÄÚÓÐÄæʱÕë·½ÏòµÄµçÁ÷£¬ÏßȦÓÐÊÕËõµÄÇ÷ÊÆ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

17£®Èçͼ£¬Á½¸ùÏ໥ƽÐеij¤Ö±µ¼Ïß·Ö±ðͨÓз½ÏòÏà·´µÄµçÁ÷I1ºÍI2£»A¡¢B¡¢C¡¢DΪµ¼Ïßijһºá½ØÃæËùÔÚµÄƽÃæÄÚµÄËĵ㣬ÇÒA¡¢B¡¢CÓëÁ½µ¼Ïß¹²Ã棬BµãÔÚÁ½µ¼ÏßÖ®¼ä£¬B¡¢DµÄÁ¬ÏßÓëµ¼ÏßËùÔÚƽÃæ´¹Ö±£¬´Å¸ÐӦǿ¶È¿ÉÄÜΪÁãµÄµãÊÇ£¨¡¡¡¡£©
A£®AµãB£®BµãC£®CµãD£®Dµã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÈçͼËùʾ£¬ÔÚxOyƽÃæÄÚÓÐÒ»°ë¾¶ÎªrµÄÔ²Ðδų¡ÇøÓò£¬ÆäÄÚ·Ö²¼×ŴŸÐӦǿ¶ÈΪB·½Ïò´¹Ö±Ö½ÃæÏòÀïµÄÔÈÇ¿´Å³¡£¬Ô²ÐÎÇøÓò±ß½çÉÏ·ÅÓÐÔ²Ðεĸй⽺Ƭ£¬Á£×Ó´òÔÚÆäÉÏ»á¸Ð¹â£®Ôڴų¡±ß½çÓëxÖá½»µãA´¦ÓÐÒ»·ÅÉäÔ´A£¬·¢³öÖÊÁ¿Îªm£¬µçÁ¿ÎªqµÄÁ£×ÓÑØ´¹Ö±´Å³¡·½Ïò½øÈë´Å³¡£¬Æä·½Ïò·Ö²¼ÔÚÓÉABºÍACËù¼Ð½Ç¶ÈÄÚ£¬BºÍCΪ´ÅÇø±ß½çÓëyÖáµÄÁ½¸ö½»µã£®¾­¹ý×ã¹»³¤µÄʱ¼ä£¬½á¹û¹â°ßÈ«²¿ÂäÔÚµÚ¢òÏóÏ޵ĸй⽺ƬÉÏ£¬ÔòÕâЩÁ£×ÓÖÐËÙ¶È×î´óµÄÊÇ£¨¡¡¡¡£©
A£®v=$\frac{\sqrt{2}Bqr}{2m}$B£®v=$\frac{Bqr}{m}$C£®v=$\frac{\sqrt{2}Bqr}{m}$D£®v=$\frac{£¨2+\sqrt{2}£©Bqr}{m}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÈçͼËùʾµç·ÖУ¬µçÔ´µçѹu=311sin £¨100¦Ðt£© V£¬A¡¢B¼ä½ÓÓС°220V440W¡±µÄµçů±¦£¬¡°220V 220W¡±µÄ³éÓÍÑÌ»ú£¬½»Á÷µçѹ±í¼°±£ÏÕË¿£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®µç·ҪÕý³£¹¤×÷£¬±£ÏÕË¿µÄ¶î¶¨µçÁ÷²»ÄÜСÓÚ3 A
B£®½»Á÷µçѹ±íµÄʾÊýΪ311 V
C£®µçů±¦·¢Èȹ¦ÂÊÊdzéÓÍÑÌ»ú·¢Èȹ¦ÂʵÄ2±¶
D£®1 minÄÚ³éÓÍÑÌ»ú²úÉúµÄÈÈÁ¿Îª1.32¡Á104 J

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ

1£®ÈçͼËùʾ£¬³¤L=4mµÄ´Ö²Úˮƽֱ¹ìµÀABÓë°ë¾¶R=0.8mµÄ¹â»¬$\frac{1}{4}$Ô²»¡¹ìµÀBCÏàÁ¬£¬BΪԲ»¡µÄ×îµÍµã£¬CΪ$\frac{1}{4}$Ô²»¡´¦£¬ÖÊÁ¿m1=1kgµÄÎïÌå¾²Ö¹ÔÚAµã£¬m1Óëˮƽ¹ìµÀµÄ¶¯Ä¦²ÁÒòÊý¦Ì=0.2£¬ÖÊÁ¿m2=2kgµÄÎïÌå¾²Ö¹ÔÚBµã£¬A¡¢B¾ùÊÓΪÖʵ㣬ÏÖÓÃÓëˮƽ·½Ïò³É¦È=37¡ãµÄºãÁ¦FÀ­m1¿ªÊ¼ÏòÓÒÔ˶¯£¬Ô˶¯x1=2.5mºó³·È¥ºãÁ¦F£¬m1Ô˶¯µ½B´¦ÓÚm2Åöײ£¨Åöײ¼«¶Ìʱ¼äºöÂÔ²»¼Æ£©£¬Åöºóm1·´µ¯£¬Ïò×ó»¬ÐÐx2=0.25mºó¾²Ö¹£¬m2µ½Cµãʱ¶ÔÔ²»¡µÄ×÷ÓÃÁ¦Ç¡ºÃµÈÓÚÁ㣬g=10m/s2£¬Çó£º
£¨1£©m1Óëm2Åöײ¹ý³ÌÖÐËðʧµÄ»úеÄÜ£»
£¨2£©ºãÁ¦FµÄ´óС£¨¼ÆËã½á¹û±£ÁôÈýλÓÐЧÊý×Ö£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈçͼËùʾΪijµçÆ÷Öеç·µÄÒ»²¿·Ö£¬µ±ÊäÈëÓÐÖ±Á÷³É·Ö¡¢½»Á÷µÍƵ³É·ÖºÍ½»Á÷¸ßƵ³É·ÖµÄµçÁ÷ºó£¬ÔÚÆäÊä³ö¶ËµÃµ½¿Éµ÷´óСµÄ½»Á÷µÍƵ³É·Ö£¬ÄÇôÏÂÁÐÓйظ÷ÔªÆ÷¼þµÄ×÷ÓõÄ˵·¨ÖУ¬´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®C1Ϊ¸ßƵÅÔ·µçÈÝÆ÷£¬½»Á÷¸ßƵ³É·Ö±»¸ÃµçÈÝÆ÷¶Ì·
B£®RΪ»¬¶¯±ä×èÆ÷£¬ËüµÄ»¬Æ¬ÉÏÏÂÒƶ¯¿ÉÒԸıäÊä³ö¶ËµçѹµÄ´óС
C£®C2Ϊ¸ôÖ±µçÈÝÆ÷£¬½»Á÷µÍƵ³É·Öͨ¹ý¸ÃµçÈÝÆ÷Êä³ö
D£®C1µÄµçÈݽϴó¡¢C2µÄµçÈݽÏС

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚͼʾµç·ÖУ¬ÁéÃôµÄµçÁ÷±íG1 ºÍG2µÄÁãµã¶¼Ôڿ̶ÈÅÌÖÐÑ룬µ±µçÁ÷´Ó¡°+¡±½ÓÏßÖùÁ÷Èëʱ£¬Ö¸ÕëÏòÓÒ°Ú£»µçÁ÷´Ó¡°-¡±½ÓÏßÖùÁ÷Èëʱ£¬Ö¸ÕëÏò×ó°Ú£®Ôڵ緽ÓͨÎȶ¨ºó£¬Á½µçÁ÷±íµÄʾÊý¾ùΪI£®ÏÖ¿ª¹ØSÓÉÔ­À´±ÕºÏ״̬ͻȻ¶Ï¿ª£¬ÔÚS¶Ï¿ªµÄ˲¼ä£¬G1±íµÄÖ¸ÕëÏòÓÒÆ«£¬G2±íµÄÖ¸ÕëÏò×óÆ«£¨¾ùÌî¡°×ó¡±»ò¡°ÓÒ¡±£©£¬Í¨¹ýG2±íµÄµçÁ÷´óСΪI£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸