精英家教网 > 高中物理 > 题目详情
5.如图所示,在以原点O为圆心、半径为R的半圆形区域内充满了磁感应强度为B的匀强磁场,x轴下方为一平行板电容器,其正极板与x轴重合且在O处开有小孔,两极板间距离为$\frac{πR}{12}$.现有电荷量为e、质量为m的电子在O点正下方负极板上的P点由静止释放.不计电子所受重力.
(1)若电子在磁场中运动一段时间后刚好从磁场的最右边缘处返回到x轴上,求加在电容器两极板间的电压.
(2)将两极板间的电压增大到第(1)问中电压的4倍,先在P处释放第一个电子,在这个电子刚到达O点时释放第二个电子,求第一个电子离开磁场时,第二个电子的位置坐标.

分析 (1)电子先经电场加速,后进入磁场中偏转.根据动能定理列式,得到电压与电子获得的速度关系式;根据几何知识得知电子在磁场中圆周运动的半径为 r=$\frac{R}{2}$.由洛伦兹力提供向心力,根据牛顿第二定律可求得速度,联立即可求得电压U.
(2)①根据上题的结果,得到将两极板间的电压增大到原来的4倍后电子在磁场中的半径.电子在电场中加速时,由牛顿第二定律和运动学公式结合得到时间;在磁场中,根据轨迹对应的圆心角,求解时间,再求解时间之比;②根据第一个电子离开磁场时,得到第二个电子的圆心角,由几何知识求解其位置坐标.

解答 解析:(1)设加速电压为U,电子经电场加速后速度为v,由动能定理得:
eU=$\frac{1}{2}m{v}^{2}$      
又有 evB=m$\frac{{v}^{2}}{R}$
r=$\frac{R}{2}$     
联立以上各式解得:U=$\frac{e{B}^{2}{R}^{2}}{8m}$
(2)电压增加为原来4倍,则有电子在磁场中的半径为:r′=2r=R
设电子在电场中运动时间为t1,加速度为a,则有:
E=$\frac{4U}{d}$
eE=ma
设间距为d,有:d=$\frac{1}{2}a{{t}_{1}}^{2}$
解得:t1=$\frac{πm}{6eB}$
电子在磁场中运动总时间为t2,则有:
T=$\frac{2πm}{eB}$
t2=$\frac{1}{6}$T
解得:t2=$\frac{πm}{3eB}$
即   t2=2t1
此可知:第一个电子离开磁场时,第二个电子的圆心角为300,如图中的Q点:
Qx=R-Rcoa30°=$\frac{2-\sqrt{3}}{2}R$
Qy=Rsin30°=$\frac{1}{2}$R
因此Q点的坐标为:($\frac{2-\sqrt{3}}{2}R$,$\frac{1}{2}R$)
答:(1)若电子在磁场中运动一段时间后刚好从磁场的最右边缘处返回到x轴上,求加在电容器两极板间的电压为$\frac{e{B}^{2}{R}^{2}}{8m}$.
(2)将两极板间的电压增大到第(1)问中电压的4倍,先在P处释放第一个电子,在这个电子刚到达O点时释放第二个电子,求第一个电子离开磁场时,第二个电子的位置坐标为($\frac{2-\sqrt{3}}{2}R$,$\frac{1}{2}R$).

点评 本题是带电粒子在组合场中运动的问题,粒子在磁场中做匀速圆周运动,要求同学们能画出粒子运动的轨迹,能根据半径公式,周期公式结合几何关系求解.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

15.一台发电机产生的按正弦规律变化的感应电动势的最大值为311V,线圈在磁场中转动的角速度100πrad/s.
(1)写出感应电动势的瞬时值表达式.
(2)若该发电机只与含电阻的负载组成闭合电路,电路的总电阻为100Ω,试写出通过负载的电流强度的瞬时表达式,在t=$\frac{1}{120}$s时电流强度的瞬时值为多少?

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

16.如图所示,两平行金属板A、B板间电压恒为U,一束波长为λ的入射光射到金属板B上,使B板发生了光电效应,已知该金属板的逸出功为W,电子的质量为m.电荷量为e,已知普朗克常量为h,真空中光速为c,下列说法中正确的是(  )
A.入射光子的能量为h$\frac{c}{λ}$
B.到达A板的光电子的最大动能为h$\frac{c}{λ}$-W+eU
C.若增大两板问电压B板没有光电子逸出
D.若减小入射光的波长一定会有光电子逸出
E.若增大入射光的频率金属板的逸出功将大于w

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

13.下面说法正确的是(  )
A.一观察者测出电子质量为2m0,则电子相对于观察者的速度为$\frac{\sqrt{3}}{2}$ C(m0为电子静止时的质量,C为光速)
B.医院用x射线进行人体透视,是因为它是各种电磁波中穿透本领最强的
C.稳恒电流周围产生稳定的磁场
D.机械振动的位移是指振动物体离开平衡位置的最大距离
E.水波从深水区传到浅水区改变传播方向的现象,是波的折射现象
F.在LC振荡电路中,充电结束时两极板间电压为U,则从开始放电到第一次放电完毕的过程中,通过电路的平均电流等于$\frac{2U}{π}$$\sqrt{\frac{C}{L}}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

20.如图,光滑金属直轨道MN和PQ固定在同一水平面内,MN、PQ平行且足够长,轨道的宽L=0.5m.轨道左端接R=0.4Ω的电阻.轨道处于磁感应强度大小B=0.4T,方向竖直向下的匀强磁场中.导体棒ab在沿着轨道方向向右的力F=1.0N作用下,由静止开始运动,导体棒与轨道始终接触良好并且相互垂直,导体棒的电阻r=0.1Ω,轨道电阻不计.求:
(1)导体棒的速度v=5.0m/s时,导体棒受到安培力的大小F
(2)导体棒能达到的最大速度大小vm和ab两端电压
(3)若ab与金属导轨间的动摩擦因素为μ=0.4,ab棒的质量m=0.1kg,g取10N/kg,求导体棒能达到的最大速度Vm

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

10.质量为m的物体做半径为R的匀速圆周运动,其线速度大小为v,则转动半周过程中动量的变化量大小为多少?当转过360°角过程中动量变化量大小为多少?

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

17.内壁光滑圆锥筒固定不动,其轴线竖直,如图,两质量相同的小球A和B紧贴内壁分别在图示所在的水平面内做匀速圆周运动,则(  )
A.A球的线速度必定大于B球的线速度
B.A球对筒壁的压力必定大于B球对筒壁的压力
C.A球的角速度必定小于B球的角速度
D.A球的运动周期必定大于B球的运动周期

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

14.如图所示,一不可伸长的轻质细绳,绳长为L,一端固定于O点,另一端系一质量为m的小球,小球绕O点在竖直平面内做圆周运动(不计空气阻力).
(1)若小球恰好通过最高点A且悬点距地面的高度h=2L,小球经过B点或D点时绳突然断开,求两种情况下小球从抛出到落地所用时间之差△t;
(2)若小球通过最高点A时的速度为v,小球运动到最低点C或最高点A时,绳突然断开,两种情况下小球从抛出到落地水平位移大小相等,则O点距离地面高度h与绳长L之间应满足什么关系.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

20.如图所示,在坐标系xOy的第一象限内,有平行于y轴向上的匀强电场,在第四象限内有垂直于纸面向外的匀强磁场,在y轴上A、B两点各有一个粒子源,A、B两点到坐标原点的距离和x轴上一点C到坐标原点的距离相等,两粒子源沿x轴正向同时发射出速度大小分别为v1、v2的两个粒子,粒子的质量、电量大小相等,电性相同,不计粒子的重力,两粒子都从C点第一次穿过x轴.
(1)若两粒子恰好在C点相碰,则电场强度大小E与磁感应强度大小B之比可能是多少?
(2)若x轴上C点右侧有一点D,CD=a,从A粒子源发出的粒子从C点进入磁场后能直接到达D点,粒子的质量为m,电量大小为q,磁场的磁感应强度B大小为多少?
(3)若从B点射出的粒子也能到达D点,粒子的质量为m,电量大小为q,则CD间的距离CD=a,求磁感应强度B应满足什么条件?

查看答案和解析>>

同步练习册答案