(18分)如图所示,圆心为原点、半径为R的圆将xOy平面分为两个区域,即圆内区域Ⅰ和圆外区域Ⅱ。区域Ⅰ内有方向垂直于xOy平面的匀强磁场B1。平行于x轴的荧光屏垂直于xOy平面,放置在坐标y=-2.2R的位置。一束质量为m、电荷量为q、动能为E0的带正电粒子从坐标为(-R,0)的A点沿x正方向射入区域Ⅰ,当区域Ⅱ内无磁场时,粒子全部打在荧光屏上坐标为(0,-2.2R)的M点,且此时,若将荧光屏沿y轴负方向平移,粒子打在荧光屏上的位置不变。若在区域Ⅱ内加上方向垂直于xOy平面的匀强磁场B2,上述粒子仍从A点沿x轴正方向射入区域Ⅰ,则粒子全部打在荧光屏上坐标为(0.4R,-2.2R)的 N点。求:
(1)打在M点和N点的粒子运动速度v1、v2的大小。
(2)在区域Ⅰ和Ⅱ中磁感应强度B1、B2的大小和方向。
(3)若将区域Ⅱ中的磁场撤去,换成平行于x轴的匀强电场,仍从A点沿x轴正方向射入区域Ⅰ的粒子恰好也打在荧光屏上的N点,则电场的场强为多大?
解析试题分析:(1)粒子在磁场中运动时洛伦兹力不做功,打在M点和N点的粒子动能均为E0,速度v1、v2大小相等,设为v,由E0=mv2可得 (2分)
(2)如图所示,区域Ⅱ中无磁场时,粒子在区域Ⅰ中运动四分之一圆周后,从C点沿y轴负方向打在M点,轨迹圆心是O1点,半径为r1=R (2分)
区域Ⅱ有磁场时,粒子轨迹圆心是O2点,半径为r2,由几何关系得=(1.2R)2+(r2-0.4R)2 (2分)
解得r2=2R (1分)
由qvB=m得B= (1分)
故B1=,方向垂直xOy平面向外。 (2分)
B2=,方向垂直xOy平面向里。 (2分)
(3)区域Ⅱ中换成匀强电场后,粒子从C点进入电场做类平抛运动,则有1.2R=vt, (2分)
0.4R= (2分)
解得场强E= (2分)
考点:考查了带电粒子在电磁场中的运动
科目:高中物理 来源: 题型:单选题
如图所示,带有正电荷的A粒子和B粒子同时以同样大小的速度从宽度为d的有界匀强磁场的边界上的O点分别以30°和60°(与边界的夹角)射入磁场,又恰好都不从另一边界飞出,则下列说法中正确
的是( )
A.A、B两粒子在磁场中做圆周运动的半径之比为
B.A、B两粒子在磁场中做圆周运动的半径之比为
C.A、B两粒子的之比是
D.A、B两粒子的之比是
查看答案和解析>>
科目:高中物理 来源: 题型:填空题
如图所示,一个带正电的粒子,质量为m,电量为q,从隔板AB上的小孔O处沿与隔板成45°角射入如图所示的匀强磁场中,磁场的磁感应强度为B,粒子的初速度为v0,重力不计,则粒子再次到达隔板所经过的时间t =_____________,到达点距射入点O的距离为___________
查看答案和解析>>
科目:高中物理 来源: 题型:填空题
水平放置的平行金属导轨相距为d,导轨一端与电源相连,垂直于导轨平面的匀强磁场的磁感应强度为B,方向如图所示.长为L的金属棒ab静止在导轨上,棒与导轨成600角,此时,通过金属棒的电流为I,则金属棒所受的安培力大小为______.
查看答案和解析>>
科目:高中物理 来源: 题型:计算题
将氢原子中电子的运动看作绕氢核做匀速圆周运动,这时在研究电子运动的磁效应时,可将电子的运动等效为一个环形电流,环的半径等于电子的轨道半径r.现对一氢原子加上一外磁场,磁场的磁感应强度大小为B,方向垂直电子的轨道平面.这时电子运动的等效电流用I1来表示.现将外磁场反向,但磁场的磁感应强度大小不变,仍为B,这时电子运动的等效电流用I2来表示.假设在加上外磁场以及外磁场反向时,氢核的位置,电子运动的轨道平面以及轨道半径都不变,求外磁场反向前后电子运动的等效电流的差即|I1-I2|等于多少?用m和e表示电子的质量和电量.
查看答案和解析>>
科目:高中物理 来源: 题型:计算题
如图所示竖直平面内,存在范围足够大的匀强磁场和匀强电场中,磁场的磁感应强度为B,方向垂直纸面向外,电场强度大小为E,电场方向竖直向下,另有一个质量为m带电量为q(q>0)的小球,设B、E、q、m、θ和g(考虑重力)为已知量。
(1)若小球射入此复合场恰做匀速直线运动,求速度v1大小和方向。
(2)若直角坐标系第一象限固定放置一个光滑的绝缘斜面,其倾角为θ,设斜面足够长,从斜面的最高点A由静止释放小球,求小球滑离斜面时的速度v大小以及在斜面上运动的时间
(3)在(2)基础上,重新调整小球释放位置,使小球到达斜面底端O恰好对斜面的压力为零,小球离开斜面后的运动是比较复杂的摆线运动,可以看作一个匀速直线运动和一个匀速圆周运动的叠加,求小球离开斜面后运动过程中速度的最大值及所在位置的坐标。
查看答案和解析>>
科目:高中物理 来源: 题型:计算题
(18分)如图所示,在xOy平面内存在均匀、大小随时间周期性变化的磁场和电场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向、沿y轴正方向电场强度为正)。在t=0时刻由原点O发射初速度大小为vo,方向沿y轴正方向的带负电粒子。
已知v0、t0、B0,粒子的比荷为,不计粒子的重力。求:
(1) t= t0时,求粒子的位置坐标;
(2)若t=5t0时粒子回到原点,求0~5to时间内粒子距x轴的最大距离;
(3)若粒子能够回到原点,求满足条件的所有E0值。
查看答案和解析>>
科目:高中物理 来源: 题型:计算题
如图,在xOy平面的第一、四象限内存在着方向垂直纸面向外、磁感应强度为B的匀强磁场,第四象限内存在方向沿-y方向、电场强度为E的匀强电场。从y轴上坐标为a的一点向磁场区发射速度大小不等的带正电同种粒子,速度方向范围是与+y方向成30°~150°,且在xOy平面内。结果所有粒子经过磁场偏转后都垂直打到x轴上,然后进入第四象限的匀强电场区。已知带电粒子电量为q,质量为m,粒子的重力及粒子间相互作用不计。求:
(1)垂直y轴方向射入磁场粒子运动的速度大小v1;
(2)求粒子在第Ⅰ象限的磁场中运动的最长时间与最短时间差。;
(3)从x轴上x=(-1)a点射人第四象限的粒子穿过电磁场后经过y轴上y=-b的点,求该粒子经过y=-b点的速度大小。
查看答案和解析>>
科目:高中物理 来源: 题型:计算题
如图所示的坐标平面内,y轴左侧存在方向垂直纸面向外、磁感应强度大小B1=0.20 T的匀强磁场,在y轴的右侧存在方向垂直纸面向里,宽度d=12.5 cm的匀强磁场B2,某时刻一质量m=2.0×10-8 kg、电荷量q=+4.0×10-4 C的带电微粒(重力可忽略不计),从x轴上坐标为(-0.25 m,0)的P点以速度v0=2.0×103 m/s沿y轴正方向运动.试求:
(1)微粒在y轴左侧磁场中运动的轨道半径;
(2)微粒第一次经过y轴时,速度方向与y轴正方向的夹角;
(3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com