精英家教网 > 高中物理 > 题目详情
2.在物理学发展的过程中,许多物理学家的科学发现推动了人类历史的进步.在对以下几位物理学家所作科学贡献叙述正确的是(  )
A.牛顿建立了“日心说”
B.爱因斯坦发现万有引力定律
C.卡文迪许最早测出引力常量
D.伽利略发现了太阳系行星运动三大定律

分析 明确有关天体运动的物理学史,知道哥白尼提出了“日心说”,开普勒发现了行星运动定律,牛顿总结出了万有引力定律,而卡文迪许测出了引力常量.

解答 解:A、哥白尼提出了“日心说”.故A错误;
B、爱因斯坦创立了相对论,牛顿发现了万有引力定律,故B错误;
C、卡文迪许最早用实验的方式测出了引力常量,故C正确.
D、开普勒发现了行星运动的三大定律.故D错误.
故选:C.

点评 本题考查物理学史,这也是高考考查的内容之一,对著名科学家的贡献要记牢,不能张冠李戴.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

7.一个做自由落体运动的物体,下列哪个物理量保持恒定不变(  )
A.速度B.加速度C.动能D.重力势能

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

13.如图所示,绝缘细杆倾斜固定放置,小球M套在杆上课沿杆滑动,M通过绝缘轻质弹簧与固定的小球N相连,杆和弹簧处于同一竖直面内,现使M、N带电荷量不同的异种电荷,将M从位置A由静止释放,M运动到B点时弹簧与杆垂直且为原长,运动到C点时速度减为零,M在A、C两点时弹簧长度相同,下列说法正确的是(  )
A.M从A点滑到C点的过程,M和弹簧组成的系统的机械能守恒
B.M从A点滑到C点的过程中,M的重力势能减少量等于其克服摩擦力做的功
C.M从A点滑到B点的过程中,弹簧的弹力做正功,电场力做负功
D.M在A、C两点的电势能相等

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

10.圆环轨道固定在竖直平面内,由于圆环存在摩擦,一个可视为质点的小 球,在圆环内至少可以做20次完整的圆周运动,当它第20次经过环的最低点时速度大小为1m/s,第18次经过环的最低点时的速度大小为 5m/s,则小球笫16次经过环的最低点时的速度v的大小一定满足(  )
A.大于 7 m/sB.等于 7 m/sC.大于 9m/sD.等于 9 m/s

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

17.某同学用如图甲所示装置,通过质量分别为m1、m2的A、B两球的碰撞来验证动量守恒定律,步骤如下:
①安装好实验装置,在地上铺一张白纸,白纸上铺放复写纸,记下重垂线所指的位置O;
②不放小球B,让小球A从斜槽上挡板处由静止滚下,并落在地面上;重复多次以确定小球落点位置;
③把小球B放在轨道水平槽末端,让小球A从挡板处由静止滚下,使它们碰撞:重复多次以确定碰撞后两小球的落点位置;
④用刻度尺分别测量三个落地点M、P、N离O点的距离,即线段的长度OM、OP、ON.
(1)关于上述实验操作,下列说法正确的是:BCD
A.斜槽轨道尽量光滑以减少误差
B.斜槽轨道末端的切线必须水平
C.入射球A每次必须从轨道的同一位置由静止滚下
D.小球A质量应大于小球B的质量

(2)确定小球落点位置的方法用尽可能小的圆将小球所有落点圈在里面,该圆的圆心位置即为落点平均位置;
(3)当所测物理量满足表达式m1OP=m1OM+m2ON(用题中所给符号表示)时,即说明两球碰撞遵守动量守恒定律;
(4)完成上述实验后,另一位同学对上述装置进行了改造.如图乙所示,在水平槽末端与水平地面间放置了一个斜面,斜面的顶点与水平末端等高且无缝连接.使小球A仍从斜槽上挡板处由静止滚下,重复实验步骤②和③的操作,得到两球落在斜面上的落点M′、P′、N′.用刻度尺测量斜面顶点到M′、P′、N′三点的距离分别为l1、l2、l3.则验证两球碰撞过程中动能守恒的表达式为m1$\sqrt{{l}_{2}}$=m1$\sqrt{{l}_{1}}$+m2$\sqrt{{l}_{3}}$(用所测物理量的字母表示).

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

7.如图所示,一束可见光射向半圆形玻璃砖的圆心O,经折射后分为两束单色光a和b.下列说法正确的是(  )
A.a光的频率大于b光的频率
B.逐渐增大入射角,b光最先发生全反射
C.在真空中,a光的波速大于b光的波速
D.玻璃对a光的折射率小于对b光的折射率

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

14.极地卫星的运行轨道平面通过地球的南北两极(轨道可视为圆轨道).如图所示,若某极地卫星从北纬30°的正上方按图示方向第一次运行至南纬60°正上方,所用时间为t,已知地球半径为R(地球可看做球体),地球表面的重力加速度为g,引力常量为G,由以上条件可知(  )
A.卫星运行的角速度为$\frac{π}{2t}$B.地球的质量为$\frac{gR}{G}$
C.卫星运行的线速度为$\frac{πR}{2t}$D.卫星距地面的高度($\frac{4{{gR}^{2}t}^{2}}{{π}^{2}}$)

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

1.如图所示,竖直平面内有足够长的光滑的两条竖直平行金属导轨,上端接有一个定值电阻R0,两导轨间的距离为2m,在虚线的区域内有与导轨平面垂直的匀强磁场,磁感应强度为0.2T,虚线间的高度为1m.完全相同的金属板ab、cd与导轨垂直放置,且质量均为0.1kg,两棒间用2m长的绝缘轻杆连接.棒与导轨间接触良好,两棒电阻皆为0.3Ω,导轨电阻不计,已知R0=2r.现用一竖直方向的外力从图示位置作用在ab棒上,使两棒以5m/s的速度向下匀速穿过磁场区域(不计空气和摩擦阻力,重力加速度g取10m/s2).求:
(1)从ab棒刚进入磁场到ab棒刚离开磁场的过程中流过R0的电荷量(结果保留两位有效数字);
(2)从cd棒刚进磁场到ab棒刚离开磁场的过程中拉力做的功.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

2.如图所示,竖直平面内有一段粗糙的斜直轨道与光滑的圆形轨道相切,切点P与圆心O的连线与竖直方向的夹角为θ=53°,圆形轨道的半径为R,圆轨道的最低点B固定在水平地面上,一质量为m的小物块从斜轨道上A点由静止开始下滑,然后沿圆形轨道运动,物块刚好能通过圆形轨道最高点C,已知物块与斜轨道间的动摩擦因数μ=0.5,sin53°=0.8,cos53°=0.6,重力加速度为g=10m/s2,求:
(1)物块通过轨道最低点B时的速度大小;
(2)斜轨道上A点到P点的距离.

查看答案和解析>>

同步练习册答案