4£®ÈçͼËùʾ£¬¶¥½Ç¦È=45¡ãµÄ¹â»¬½ðÊôµ¼¹ì MON¹Ì¶¨ÔÚˮƽÃæÄÚ£¬µ¼¹ì´¦ÔÚ·½ÏòÊúÖ±¡¢´Å¸ÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡ÖУ®Ò»¸ùÓëON´¹Ö±µÄµ¼Ìå°ôÔÚˮƽÍâÁ¦×÷ÓÃÏÂÒԺ㶨ËÙ¶Èv0Ñص¼¹ìMONÏòÓÒ»¬¶¯£¬µ¼Ìå°ôµÄÖÊÁ¿Îªm£¬µ¼¹ìÓëµ¼Ìå°ôµ¥Î»³¤¶ÈµÄµç×è¾ùÔÈΪr£¬µ¼Ìå°ôÓëµ¼¹ì½Ó´¥µãΪaºÍb£¬µ¼Ìå°ôÔÚ»¬¶¯¹ý³ÌÖÐʼÖÕ±£³ÖÓëµ¼¹ìÁ¼ºÃ½Ó´¥ÇÒûÓÐÍÑÀëµ¼¹ì£®µ±t=0ʱ£¬µ¼Ìå°ôλÓÚ×ø±êÔ­µão´¦£¬Çó£º
£¨1£©µ¼Ìå°ô×÷ÔÈËÙÖ±ÏßÔ˶¯Ê±Ë®Æ½ÍâÁ¦FµÄ±í´ïʽ£»
£¨2£©µ¼Ìå°ôÔÚ0¡«tʱ¼äÄÚ²úÉúµÄ½¹¶úÈÈQ£»
£¨3£©ÈôÔÚt0ʱ¿Ì½«ÍâÁ¦F³·È¥£¬µ¼Ìå°ô×îÖÕÔÚµ¼¹ìÉϾ²Ö¹Ê±µÄ×ø±êx£®

·ÖÎö £¨1£©Çó³ötʱ¿Ìµ¼Ìå°ôµÄÓÐЧ³¤¶È£¬½áºÏÇиî²úÉúµÄ¸ÐÓ¦µç¶¯Êƺͱպϵç·ŷķ¶¨ÂÉÇó³öµçÁ÷Ç¿¶ÈµÄ´óС£®µ±µ¼Ìå°ô×öÔÈËÙÖ±ÏßÔ˶¯Ê±£¬Ë®Æ½ÍâÁ¦µÈÓÚ°²ÅàÁ¦£¬¸ù¾ÝƽºâÇó³öˮƽÀ­Á¦µÄ±í´ïʽ£®
£¨2£©µ¼Ìå°ôÔÚ0¡«tʱ¼äÄÚµçÁ÷´óСºã¶¨£¬×¥×¡RÓëʱ¼äÕý±È£¬Í¨¹ýƽ¾ù¹¦ÂÊ£¬¸ù¾ÝQ=PtÇó³ö²úÉúµÄ½¹¶úÈÈQ£®
£¨3£©¸ù¾Ý¶¯Á¿¶¨Àí£¬½áºÏ΢·Ö˼Ïë¡¢Ô˶¯Ñ§¹«Ê½Çó³öÔÚt=0ʱ¿Ì½«ÍâÁ¦F³·È¥£¬µ¼Ìå°ô×îÖÕÔÚµ¼¹ìÉϾ²Ö¹Ê±µÄ×ø±êx

½â´ð ½â£º£¨1£©0µ½tʱ¼äÄÚ£¬µ¼Ìå°ôµÄλÒÆ x=v0t
tʱ¿Ì£¬µ¼Ìå°ô³¤¶È l=x
µ¼Ìå°ôµÄµç¶¯ÊÆ E=Blv0
»Ø·×ܵç×è R=£¨2x+$\sqrt{2}$x£©r
µçÁ÷Ç¿¶È I=$\frac{E}{R}$=$\frac{B{v}_{0}}{£¨2+\sqrt{2}£©r}$
ÓÉÓÚµ¼Ìå°ô×öÔÈËÙÔ˶¯£¬°²ÅàÁ¦µÈÓÚÀ­Á¦£®
Ôò F=BIl=$\frac{{B}^{2}{v}_{0}^{2}t}{£¨2+\sqrt{2}£©r}$
£¨2£©ÔÚtʱ¿Ìµ¼Ìå°ôµÄµç×è R=£¨2+$\sqrt{2}$£©rv0t   ¼´ R¡Øt
ÓÉÓÚµçÁ÷Iºã¶¨£¬Òò´Ë Q=${I}^{2}\overline{R}t$=$[\frac{B{v}_{0}}{£¨2+\sqrt{2}r£©}]^{2}$•$\frac{{v}_{0}tr}{2}t$=$\frac{{B}^{2}{v}_{0}^{3}{t}^{2}}{2£¨2+\sqrt{2}£©^{2}r}$
£¨3£©³·È¥ÍâÁ¦ºó£¬ÉèÈÎÒâʱ¿Ìtµ¼Ìå°ôµÄ×ø±êΪx£¬ËÙ¶ÈΪv£¬È¡¼«¶Ìʱ¼ä¡÷t
ÔÚt¡«t+¡÷tʱ¼äÄÚ£¬Óɶ¯Á¿¶¨ÀíµÃ  BlI¡÷t=m¡÷v
¿ÉµÃ B$\frac{Bv}{£¨2+\sqrt{2}£©r}$vt¡÷t=$\frac{{B}^{2}¡÷s}{£¨2+\sqrt{2}£©r}$=m¡÷v
ÔÚt0¡«tʱ¼äÄÚ $\sum_{\;}^{\;}$ $\frac{{B}^{2}¡÷s}{£¨2+\sqrt{2}£©r}$=mv0£¬¡÷s×Ü=$\frac{£¨x+{x}_{0}£©£¨x-{x}_{0}£©}{2}$=$\frac{{x}^{2}-{x}_{0}^{2}}{2}$
¿ÉµÃ $\frac{{B}^{2}}{£¨2+\sqrt{2}£©r}$•$\frac{{x}^{2}-{x}_{0}^{2}}{2}$=mv0£¬
ÆäÖРx0=v0t0£»
µ¼Ìå°ô¾²Ö¹Ê±µÄ×ø±êΪ x=$\sqrt{\frac{2£¨2+\sqrt{2}£©rm{v}_{0}}{{B}^{2}}+£¨{v}_{0}{t}_{0}£©^{2}}$
´ð£º
£¨1£©µ¼Ìå°ô×÷ÔÈËÙÖ±ÏßÔ˶¯Ê±Ë®Æ½ÍâÁ¦FµÄ±í´ïʽΪF=$\frac{{B}^{2}{v}_{0}^{2}t}{£¨2+\sqrt{2}£©r}$£»
£¨2£©µ¼Ìå°ôÔÚ0¡«tʱ¼äÄÚ²úÉúµÄ½¹¶úÈÈQΪ$\frac{{B}^{2}{v}_{0}^{3}{t}^{2}}{2£¨2+\sqrt{2}£©^{2}r}$£»
£¨3£©ÈôÔÚt0ʱ¿Ì½«ÍâÁ¦F³·È¥£¬µ¼Ìå°ô×îÖÕÔÚµ¼¹ìÉϾ²Ö¹Ê±µÄ×ø±êxΪ$\sqrt{\frac{2£¨2+\sqrt{2}£©rm{v}_{0}}{{B}^{2}}+£¨{v}_{0}{t}_{0}£©^{2}}$£®

µãÆÀ ±¾Ìâ×ۺϿ¼²éÁËÇиî²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆ¡¢±ÕºÏµç·ŷķ¶¨ÂÉ¡¢Å£¶ÙµÚ¶þ¶¨ÂɵÈ֪ʶµã£¬Òª×¢Òâ²»ÄÜÖ»¸ù¾Ý¸ÐÓ¦µçµç¶¯ÊƱ仯£¬ÈÏΪ¸ÐÓ¦µçÁ÷¼õС£¬Æäʵµç×èÒ²Ôö´ó£¬¸ÐÓ¦µçÁ÷²»±ä£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ïà¶ÔÂÛºÍÁ¿×ÓÁ¦Ñ§µÄ³öÏÖ£¬²¢²»ËµÃ÷¾­µäÁ¦Ñ§Ê§È¥ÁËÒâÒ壬¶øÖ»ÊÇ˵Ã÷ËüÓÐÒ»¶¨µÄÊÊÓ÷¶Î§£®¾­µäÁ¦Ñ§µÄÊÊÓ÷¶Î§ÊÇ£¨¡¡¡¡£©
A£®ºê¹ÛÊÀ½ç£¬¸ßËÙÔ˶¯B£®Î¢¹ÛÊÀ½ç£¬µÍËÙÔ˶¯
C£®ºê¹ÛÊÀ½ç£¬µÍËÙÔ˶¯D£®Î¢¹ÛÊÀ½ç£¬¸ßËÙÔ˶¯

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ò»³äµçºóµÄƽÐаåµçÈÝÆ÷±£³ÖÁ½¼«°åµÄÕý¶ÔÃæ»ý¡¢¼ä¾àºÍµçѹ²»±ä£¬ÏÖÔÚÁ½¼«°å¼ä²åÈëÒ»µç½éÖÊ£¬ÆäµçÈÝCºÍ¼«°åµÄµçºÉÁ¿QµÄ±ä»¯Çé¿öÊÇ£¨¡¡¡¡£©
A£®CºÍQ¾ùÔö´óB£®CÔö´ó£¬Q¼õСC£®C¼õС£¬QÔö´óD£®CºÍQ¾ù¼õС

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÈçͼËùʾ£¬xÖáÉÏ·½ÓÐÊúÖ±ÏòϵÄÔÈÇ¿µç³¡£¬xÖáÏ·½Óд¹Ö±Ö½ÃæÏòÍâµÄÔÈÇ¿´Å³¡£®¾ØÐÎOACDµÄ±ß³¤·Ö±ðΪhºÍ2hÒ»¸ö´øÕýµçµÄÁ£×Ó£¬ÖÊÁ¿ÎªmµçºÉÁ¿Îªq£¬ÒÔƽÐÐÓÚxÖáµÄijһ³õËٶȴÓAµãÉä³ö£¬¾­t0ʱ¼äÁ£×Ó´ÓDµã½øÈë´Å³¡£¬ÔÙ¾­¹ýÒ»¶Îʱ¼äºóÁ£×ÓÓÖÒ»´Î¾­¹ýAµã£¨ÖØÁ¦ºöÂÔ²»¼Æ£©£®Çó£º
£¨1£©µç³¡Ç¿¶È´óСE£»
£¨2£©´Å¸ÐӦǿ¶È´óСB£»
£¨3£©Èô½ö¸Ä±äÁ£×Ó³õËٶȵĴóС£¬ÇóÁ£×ÓÒÔ×î¶Ìʱ¼äÓÉAÔ˶¯µ½CËùÐèµÄ³õËٶȴóСvx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

19£®ÈçͼËùʾ£¬¹â»¬Ë®Æ½ÃæÉÏ·Å×ÅÖÊÁ¿ÎªMµÄľ°å£¬Ä¾°åµÄÉϱíÃæ´Ö²ÚÇÒ×ó¶ËÓÐÒ»¸öÖÊÁ¿ÎªmµÄľ¿é?ÏÖ¶Ôľ¿éÊ©¼ÓÒ»¸öˮƽÏòÓҵĺãÁ¦F£¬Ä¾¿éÓëľ°åÓɾ²Ö¹¿ªÊ¼Ô˶¯£¬¾­¹ýʱ¼ät·ÖÀë?ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô½öÔö´óľ°åµÄÖÊÁ¿M£¬Ôòʱ¼ätÔö´ó
B£®Èô½öÔö´óľ¿éµÄÖÊÁ¿m£¬Ôòʱ¼ätÔö´ó
C£®Èô½öÔö´óºãÁ¦F£¬Ôòʱ¼ätÔö´ó
D£®Èô½öÔö´óľ¿éÓëľ°å¼äµÄ¶¯Ä¦²ÁÒòÊý£¬Ôòʱ¼ätÔö´ó

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÈçͼËùʾ£¬ABCΪһ͸Ã÷²ÄÁÏ×ö³öµÄÖùÐιâѧԪ¼þµÄºá½ØÃ棬DΪACÔ²»¡µÄÔ²ÐÄ£¬¡ÏADC=120¡ã£¬¡ÏABC=60¡ã£¬AB=BC£¬B¡¢D¼äµÄ¾àÀëΪd£®D´¦µã¹âÔ´·¢³öµÄ¹âÖÐÓÐÒ»Êø¹âÏß¾­AB¡¢BC½çÃæÁ½´ÎÈ«·´Éäºó£¬¹âÊøÇ¡ºÃͨ¹ýDµã£®Çó£º
¢Ù¸ÃÖÖ²ÄÁÏÕÛÉäÂʵÄ×îСֵ£»
¢ÚABÉÏÓйâͨ¹ýµÄ×î´ó³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ä³Ë®¿âË®Ãæ±Ì²¨µ´Ñú£¬ºþ¹âɽɫ£¬ÈçÊ«Èç»­£®Ë®¿âÓÐÒ»¸öСµº£¬Éú»î׎ü°ÙÖ»ÃÀºïÍõ£®Èçͼ£¬ÖÊÁ¿ÎªmµÄСºï×ÓÔÚµ´Çïǧ£¬´óºï×ÓÓÃˮƽÀ­Á¦F£¬»ºÂýµØ½«Çïǧ´Ó×îµÍµãÀ­µ½ÓëÊúÖ±·½Ïò¼Ð½Ç¦È£¬ÌÙÌõ³¤ÎªL£®Ôڴ˹ý³ÌÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®À­Á¦FÊǺãÁ¦B£®Èô¼Ð½Ç¦È¼ÌÐø±ä´ó£¬ÌÙÌõ¿ÉÄÜ»á¶Ï
C£®À­Á¦F×ö¹¦WF=FLsin¦ÈD£®Ð¡ºï×ÓÖØÁ¦ÊÆÄÜÔö¼ÓmgLcos¦È

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÈçͼËùʾ£¬Ò»ÖÊÁ¿m=1.0kgµÄСÎï¿é¾²Ö¹ÔÚ´Ö²Úˮƽ̨½×ÉÏ£¬Àę̈½×±ßÔµOµãµÄ¾àÀës=5m£¬ËüÓëˮƽ̨½×±íÃæµÄ¶¯Ä¦²ÁÒòÊý¦Ì=0.25£®ÔŲ́½×ÓÒ²à¹Ì¶¨Ò»¸öÒÔOΪԲÐĵĠ$\frac{1}{4}$Ô²»¡µ²°å£¬Ô²»¡°ë¾¶R=5$\sqrt{2}$m£¬ÒÔOµãΪԭµã½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵxOy£®ÏÖÓÃF=5NµÄˮƽºãÁ¦À­¶¯Ð¡Îï¿é£¨ÒÑÖªÖØÁ¦¼ÓËÙ¶Èg=10m/s2£©£®
£¨1£©ÎªÊ¹Ð¡Îï¿é²»ÂäÔÚµ²°åÉÏ£¬ÇóÀ­Á¦F×÷ÓõÄ×ʱ¼ä£»
£¨2£©ÈôСÎï¿éÔÚˮƽ̨½×ÉÏÔ˶¯Ê±£¬À­Á¦FÒ»Ö±×÷ÓÃÔÚСÎï¿éÉÏ£¬µ±Ð¡Îï¿é¹ýOµãʱ³·È¥À­Á¦F£¬ÇóСÎï¿é»÷Öе²°åÉϵÄλÖõÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÈçͼËùʾ£¬°ë¾¶R=0.4mµÄ¹â»¬Ô²»¡¹ìµÀ¹Ì¶¨ÔÚÊúֱƽÃæÄÚ£¬¹ìµÀµÄÒ»¸ö¶ËµãBºÍÔ²ÐÄOµÄÁ¬ÏßÓëˮƽ·½Ïò¼äµÄ¼Ð½Ç¦È=30¡ã£¬ÁíÒ»¶ËµãCΪ¹ìµÀµÄ×îµÍµã£¬CµãÓÒ²àµÄ¹â»¬Ë®Æ½Â·ÃæÉϽô°¤Cµã·ÅÖÃһľ°å£¬Ä¾°åÖÊÁ¿M=2kg£¬ÉϱíÃæÓëCµãµÈ¸ß£®ÖÊÁ¿m=1kgµÄÎï¿é£¨¿ÉÊÓΪÖʵ㣩´Ó¿ÕÖÐAµãÒÔv0=1m/sµÄËÙ¶ÈˮƽÅ׳ö£¬Ç¡ºÃ´Ó¹ìµÀµÄB¶ËÑØÇÐÏß·½Ïò½øÈë¹ìµÀ£¬ÑعìµÀ»¬ÐÐÖ®ºóÓÖ»¬ÉÏľ°å£¬µ±Ä¾¿é´Óľ°åÓҶ˻¬³öʱµÄËÙ¶ÈΪv1=2m/s£¬ÒÑÖªÎï¿éÓëľ°å¼äµÄ¶¯Ä¦²ÁÒòÊý¦Ì=0.5£¬È¡g=10m/s2£¬Çó£º
£¨1£©Îï¿é¸Õµ½´ï¹ìµÀÉϵÄCµãʱ¶Ô¹ìµÀµÄѹÁ¦
£¨2£©Ä¾°åµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸