精英家教网 > 高中物理 > 题目详情
6.如图所示的是同一打点计时器打出的4条纸带,其中加速度最大的纸带是  (  )
A.B.C.D.

分析 根据匀变速直线运动的推论公式△x=aT2可以判断加速度的大小,从而即可求解.

解答 解:同一打点计时器打出的四条纸带,点迹间的时间间隔相等,设为T.根据逐差相等公式△x=aT2可知,点迹间位移差△x越大,加速度越大,据图可以看出,A图的点与点之间的距离差最大,故A的加速度最大.故A正确、BCD错误.
故选:A.

点评 打点计时器打点的时间间隔是相等的,观察纸带上点间的距离,根据物理规律解决问题.要提高应用匀变速直线的规律以及推论解答实验问题的能力,在平时练习中要加强基础知识的理解与应用.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

16.无限大接地金属板和板前一点电荷在有电荷一侧形成的电场区域,与两个等量异号的点电荷在此区域形成的电场等效.如图所示P为一无限大金属板,Q为板前距板为r的一带正电的点电荷,MN为过Q点和金属板垂直的直线,直线上A、B是和Q点的距离相等的两点.下面关于A、B两点的电场强度EA和EB、电势φA和φB判断正确的是(  )
A.EA>EB,φA<φBB.EA>EB,φA>φBC.EA>EB,φABD.EA=EB,φA>φB

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

17.如图,竖直平面内有$\frac{3}{4}$光滑圆环轨道,R=0.2m,圆心O点与水平面等高,一小球从A点静止下落,沿圆轨道B点的切线方向进入轨道,然后恰好通过轨道最高点C点.求:
(1)初始位置A点到水平面B点的高度;
(2)小球从C点运动到BD水平面上的落地点到B点的距离.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

14.将一倾角为θ=37°的传送带固定在水平面上,在外力的驱动下传送带始终保持顺时针方向转动,且速度大小恒为v=4m/s,在传送带的底端N处固定一弹性挡板O.现将一可视为质点的滑块由传送带的顶端M处静止释放,滑块到达底端时与弹性挡板发生碰撞,碰后速度大小不变,方向变为沿传送带向上,且一直运动到最高点P.假设弹性挡板的厚度不计,滑块与挡板碰撞的时间忽略不计,已知传送带的长度为x=9m,滑块的质量为m=1kg,滑块与传送带间的动摩擦因数为μ=0.5,cos37°=0.8,sin37°=0.6,重力加速度g=10m/s2.求上述过程滑块运动的总时间以及最高点P到N处的距离.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

1.汽车拉着拖车前进,汽车对拖车的作用力大小为F,拖车对汽车的作用力大小为T.关于F与T的关系,下列说法正确的是(  )
A.汽车加速前进时F大于T
B.汽车减速前进时F小于T
C.只有汽车匀速前进时F才等于T
D.无论汽车加速、减速还是匀速前进,F始终等于T

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

11.电梯载着一名质量60kg的乘客以3m/s的速度匀速上升,电梯对该乘客做功的功率为(g取10m/s2 )(  )
A.1800WB.180WC.200WD.20W

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

18.如图所示,翻滚过山车轨道顶端A点距地面的高度H=45m,圆形轨道最高处的B点距地面的高度h=30m.不计摩擦阻力,翻滚过山车从A点由静止开始下滑,g取10m/s2.试求:
(1)经过C点时对轨道的压力是重力的多少倍?
(2)经过B点时加速度的大小.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.某小组利用气垫导轨装置探究“做功与物体动能改变量之间的关系”.图1中,遮光条宽度为d,光电门可测出其挡光时间△t,滑块与力传感器的总质量为M,砝码盘的质量为m0,不计滑轮和导轨摩擦.实验步骤如下:①调节气垫导轨使其水平.并取5个质量均为m的砝码放在滑块上:

②用细绳连接砝码盘与力传感器和滑块,让滑块静止放在导轨右侧的某一位置,测出遮光条到光电门的距离为S;
③从滑块上取出一个砝码放在砝码盘中,固定滑块使其静止,记录此时力传感器的值为F.接通电源,释放滑块后,记录此时力传感器的值为F′,测出遮光条经过光电门的挡光时间△t;
④再从滑块上取出一个砝码放在砝码盘中,重复步骤③,并保证滑块从同一个位置静止释放;
⑤重复步骤④,直至滑块上的砝码全部放入到砝码盘中.
请完成下面问题:
(a)测量遮光条宽度时,应该使用图2游标卡尺上的B(选填A、B、C)部件.若用十分度的游标卡尺测得遮光条宽度d如图3,则d=10.2mm.
(b)滑块经过光电门时的速度可用v=$\frac{d}{△t}$(用题中所给的字母表示,下同)计算.
(c)在处理步骤③所记录的实验数据时,甲同学理解的合外力做功为W1=FS,则其对应动能变化量应当是△Ek1=$\frac{(M+4m){d}^{2}}{2△{t}^{2}}$.乙同学理解的合外力做功为W2=F′S,则其对应动能变化量应当是△Ek2=$\frac{(M+5m+{m}_{0}){d}^{2}}{2△{t}^{2}}$;
d)丙同学按照乙同学的思路,根据实验数据得到F-$\frac{1}{△t}$的图线如图4所示,则其斜率k=$\frac{(M+5m+{m}_{0}){d}^{2}}{2S}$.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.某些城市交通部门规定汽车在市区某些街道行驶速度不得超过v0=30km/h.一辆汽车在该水平路段紧急刹车时车轮抱死,沿直线滑动一段距离后停止.交警测得车轮在地面上滑行的轨迹长为s0=10m.从手册中查出该车轮胎与地面间的动摩擦因数为μ=0.75,取重力加速度g=10m/s2
(1)假如你是交警,请你判断汽车是否违反规定,超速行驶(在下面写出判断过程)
(2)目前,有一种先进的汽车制动装置,可保证车轮在制动时不被抱死,使车轮仍有一定的滚动,安装了这种防抱死装置的汽车,在紧急刹车时可获得比车轮抱死更大的制动力,从而使刹车距离大大减小.假设汽车安装防抱死装置后刹车制动力恒为f,驾驶员的反应时间为t,汽车的质量为m,汽车行驶的速度为v,试推出刹车距离s(反应距离与制动距离之和)的表达式.
(3)根据刹车距离s的表达式,试分析引发交通事故的原因的哪些.

查看答案和解析>>

同步练习册答案