精英家教网 > 高中物理 > 题目详情
19.如图所示,质量为m的物体A,从弧形面的底端以初速v0向上滑行,达到某一高度后,又循原路返回,且继续沿水平面滑行至P点而停止,求在整个过程中摩擦力对物体A所做的功.

分析 对全程进行分析,由动能定理可求得摩擦力所做的功.

解答 解:以全程分析,取v0为初态,P点为末态;
则由动能定理可知:
Wf=0-$\frac{1}{2}$mv02
即摩擦力做功为-$\frac{1}{2}$mv02
答:摩擦力对物体A所做的功为-$\frac{1}{2}$mv02

点评 本题考查动能定理的应用,要注意明确本题对全过程分析最为简单,重力做功为零.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

9.如图所示,两端开口、半径为r的绝缘刚性圆管竖直放置,O1OO2为其中轴线,侧面上有两个高度差为h的小孔P1和P2,两小孔与中轴线在同一竖直平面内,P1孔附近竖直放置一对间距为d的平行金属极板M,N,两极板间加有恒定电压,N板中有个小孔P,且P、P1、O三点恰好位于垂直N板的水平直线上,P、P1距离为2d,整个圆管内存在磁感应强度大小为B,方向竖直向下的匀强磁场.质量为m,电荷量为q的带正电粒子从M板由静止释放,经P、P1进人圆管后在管内与管壁发生两次弹性碰撞(碰撞前后速度大小不变,方向变化遵循光的反射规律)后,最终恰好能回到M板,不计粒子重力.
(1)求粒子在圆管内运动的速率v
(2)求粒子从M板处释放到再次回到M板的时间T;
(3)若在整个圆管内再加上一个竖直向下的匀强电场,并适当调整MN极板间的电压,可使粒子在管内与管壁发生三次弹性碰撞后从P2孔飞出,求电场强度大小E的可能值.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

10.如图所示,$\frac{1}{4}$光滑圆弧轨道AB的末端B与水平传送带相切(未连接,圆弧轨道不影响传送带运动),质量m=1.0kg的滑块在水平力作用下静止在圆弧上,滑块同O的连线与OA的夹角θ=37°,传送带的长L=1.5m,运行速度v0=3.0m/s;今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同,滑块与传送带的动摩擦因数μ=0.2,sin37°=0.6,cos37°=0.8,g=10m/s2,求:
(1)水平作用力F的大小;
(2)滑块下滑高度h的大小.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

7.如图所示的实验电路可以测定电源的电动势和内电阻.电压表V1、V2可以看到理想电表,滑动变阻器用R表示.已知定值电阻阻值为R.
(1)以电压表V1的示数U1为纵坐标,以电压表V1与电压表V2的示数之差U1-U2为横坐标,在平面直角坐标系中描点作图,得到一条直线,测出直线的斜率的绝对值为k,纵坐标截距为b,则电源电动势E=b,内阻r=kR0
(2)以电压表V1的示数U1为横坐标,电压表V2的示数U2为纵坐标,在平面直角坐标系中描点作图,同样会得到一条直线,测出该直线的斜率为k′,纵轴截距为b′,则电源电动势为k′、b′可表示为E=$\frac{b′}{k′-1}$,内阻r=$\frac{{R}_{0}}{k′-1}$.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

14.某同学设计了如图1所示的装置来探究加速度与力的关系.弹簧测力计固定在一合适的木块上,桌面的右边缘固定一个光滑的定滑轮,细绳的两端分别与弹簧测力计的挂钩和矿泉水瓶连接.在桌面上画出两条平行线P、Q,并测出间距d.开始时将木块置于P处,现缓慢向瓶中加水,直到木块刚刚开始运动为止,记下弹簧秤的示数F0,以此表示滑动摩擦力的大小.再将木块放回原处并按住,继续向瓶中加水后,记下弹簧秤的示数F,然后释放木块,并用秒表记下木块从P运动到Q处的时间t.
(1)木块的加速度可以用d、t表示为a=$\frac{2d}{{t}^{2}}$.
(2)改变瓶中水的质量,重复实验,确定加速度a与弹簧秤示数F的关系.下列图象(图2)中能表示该同学实验结果的是C.(填入正确选项的字母序号)
(3)用加水的方法改变拉力的大小与挂钩码的方法相比,它的优点是BC.(填选项前字母)
A.可以改变滑动摩擦力的大小            C.可以更方便地获取更多组实验数据 
B.可以改变木块与木板之间动摩擦因数的大小     D.可以获得更大的加速度以提高实验精度.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

4.如图所示,虚线下方存在一垂直纸面向里的匀强磁场,磁感应强度大小为B,现将一长为a、宽为b的单匝矩形导线框从虚线上方某位置由静止释放,已知导线框质量为m,总电阻为R,其上、下边始终与磁场边界平行,当导线框下边刚进入磁场时,导线框的加速度为$\frac{3}{5}$g(g为重力加速度),当导线框上边刚要进磁场时,导线框的加速度恰好为0,不计空气阻力,则下列说法中正确的是(  )
A.导线框下边刚要进磁场时,导线框中电流沿逆时针方向(从纸面外向里看),大小为$\frac{3mg}{5Ba}$
B.导线框上边刚要进磁场时,导线框速度大小为$\frac{mgR}{{B}^{2}a}$
C.导线框进入磁场的过程中,导线框中产生的焦耳热为mgb-$\frac{2{1}^{3}{g}^{2}{R}^{2}}{50{B}^{4}{a}^{4}}$
D.导线框进入磁场的过程中,通导线框的总电荷量为$\frac{Bab}{2R}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

11.变化的磁场可以激发感生电场,电子感应加速器就是利用感生电场使电子加速的设备.它的基本原理如图所示,上、下为两个电磁铁,磁极之间有一个环形真空室,电子在真空室内做圆周运动.电磁铁线圈电流的大小、方向可以变化,在两极间产生一个由中心向外逐渐减弱、而且变化的磁场,这个变化的磁场又在真空室内激发感生电场,其电场线是在同一平面内的一系列同心圆,产生的感生电场使电子加速.图1中上部分为侧视图、下部分为俯视图.已知电子质量为m、电荷量为e,初速度为零,电子圆形轨道的半径为R.穿过电子圆形轨道面积的磁通量Φ随时间t的变化关系如图2所示,在t0 时刻后,电子轨道处的磁感应强度为B0,电子加速过程中忽略相对论效应.

(1)求在t0 时刻后,电子运动的速度大小;
(2)求电子在整个加速过程中运动的圈数;
(3)电子在半径不变的圆形轨道上加速是电子感应加速器关键技术要求.试求电子加速过程中电子轨道处的磁感应强度随时间变化规律.
当磁场分布不均匀时,可认为穿过一定面积的磁通量与面积的比值为平均磁感应强度$\overline B$.请进一步说明在电子加速过程中,某一确定时刻电子轨道处的磁感应强度与电子轨道内的平均磁感应强度的关系.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

8.下列说法正确的是(  )
A.一群处于n=4能级的氢原子向低能级跃迁时能辐射出四种不同频率的光子
B.轻核的聚变过程有质量亏损,释放的核能可由爱因斯坦质量方程(△E=△mc2)计算
C.${\;}_{92}^{238}$U→${\;}_{90}^{234}$Th+${\;}_{2}^{4}$He是α衰变方程,目前核电站发电是利用这种核反应释放的核能转化为电能的
D.${\;}_{92}^{235}$U+${\;}_{0}^{1}$n→${\;}_{54}^{140}$Xe+${\;}_{38}^{94}$Sr+d${\;}_{0}^{1}$n,式中d=2,目前核电站发电是利用这种核反应释放的核能转化为电能的

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

9.如图所示,一长为L=0.64m的绝缘平板PR固定在水平地面上,挡板只固定在平板右端.整个空间有一平行于PR的匀强电场E,在板的右半部分有一垂直纸面向里的匀强磁场B,磁场宽度d=0.32m.一质量m=O.50×10-3kg、电荷量q=5.0×l0-2C的小物体,从板的P端由静止开始向右做匀加速运动,从D点进入磁场后恰能做匀速直线运动,碰到挡板R 后被弹回,若在碰撞瞬间撤去电场(不计撤掉电场对原磁场的影响),则物体返回时在磁场中仍做匀速运动,离开磁场后做减速运动且停在C点,PC=$\frac{L}{4}$,物体与平板间的动摩擦因数μ=0.20,g取10m/s2
(1)求磁感应强度B的大小;
(2)求物体与挡板碰撞过程中损失的机械能.

查看答案和解析>>

同步练习册答案