·ÖÎö £¨1£©Ó¦ÓõãµçºÉµÄ³¡Ç¿¹«Ê½Ó볡µÄµþ¼ÓÔÀíÇó³öµç³¡Ç¿¶È£®
£¨2£©Óɶ¯Äܶ¨ÀíÇó³ö×èÁ¦£®
£¨3£©Ó¦Óö¯Äܶ¨ÀíÇó³öµçÊƲȻºó¸ù¾ÝµçÊƲîµÄ¶¨ÒåʽÇó³öµçÊÆ£®
£¨4£©Ó¦Óö¯Äܶ¨ÀíÇó³ö·³Ì£®
½â´ð ½â£º£¨1£©ÓɵãµçºÉµç³¡Ç¿¶È¹«Ê½ºÍµç³¡µþ¼ÓÔÀí¿ÉµÃ£º
E=k$\frac{Q}{£¨\frac{L}{2}£©^{2}}$-k$\frac{Q}{£¨\frac{3L}{2}£©^{2}}$=$\frac{32kQ}{9{L}^{2}}$£»
£¨2£©ÓɶԳÆÐÔ£¬UA=UB£¬µçºÉ´ÓAµ½BµÄ¹ý³ÌÖУ¬µç³¡Á¦×ö¹¦ÎªÁ㣬¿Ë·þ×èÁ¦×ö¹¦Îª£ºWf=fL£¬Óɶ¯Äܶ¨Àí£º
-fL=0-$\frac{1}{2}$m$v_0^2$
µÃ£ºf=$\frac{1}{2L}$mv02
£¨3£©ÉèµçºÉ´ÓAµ½Oµãµç³¡Á¦×ö¹¦ÎªWF£¬¿Ë·þ×èÁ¦×ö¹¦Îª$\frac{1}{2}$Wf£¬
Óɶ¯Äܶ¨Àí£ºWF-$\frac{1}{2}$Wf=n$\frac{1}{2}$m$v_0^2$-$\frac{1}{2}$m$v_0^2$
µÃ£ºWF=$\frac{mv_0^2}{4}£¨2n-1£©$
ÓÉ£ºWF=q£¨UA-UO£©
µÃ£º¦ÕA=$\frac{W_F}{q}$=$\frac{m{v}_{0}^{2}}{4q}$£¨2n-1£©
£¨4£©µçºÉ×îºóÍ£ÔÚOµã£¬ÔÚÈ«¹ý³ÌÖе糡Á¦×ö¹¦ÎªWF=$\frac{mv_0^2}{4}£¨2n-1£©$£¬µçºÉÔڵ糡ÖÐÔ˶¯µÄ×Ü·³ÌΪs£¬Ôò×èÁ¦×ö¹¦Îª-fs£®
Óɶ¯Äܶ¨Àí£ºWF-fs=0-$\frac{1}{2}$m$v_0^2$
¼´£º$\frac{mv_0^2}{4}£¨2n-1£©$-$\frac{1}{2L}$m$v_0^2$s=-$\frac{1}{2}$m$v_0^2$
½âµÃ£ºs=£¨n+0.5£©L
´ð£º£¨1£©AµãµÄ³¡Ç¿´óС$\frac{32kQ}{9{L}^{2}}$£»
£¨2£©×èÁ¦µÄ´óС$\frac{1}{2L}$mv02£»
£¨3£©AµãµÄµçÊÆ$\frac{m{v}_{0}^{2}}{4q}$£¨2n-1£©£»
£¨4£©µçºÉÔڵ糡ÖÐÔ˶¯µÄ×Ü·³Ì£¨2n-1£©L£®
µãÆÀ ±¾Ì⿼²éÁ˶¯Äܶ¨ÀíµÄÓ¦Ó㬷ÖÎöÇå³þµçºÉµÄÔ˶¯¹ý³Ì£¬Ó¦Óö¯Äܶ¨Àí¡¢µãµçºÉµÄ³¡Ç¿¹«Ê½Ó볡µÄµþ¼ÓÔÀí¼´¿ÉÕýÈ·½âÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | Ã×£¨m£© | B£® | ǧ¿Ë£¨kg£© | C£® | Ã루s£© | D£® | Å£¶Ù£¨N£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | Ï»¬¹ý³ÌÖУ¬¼ÓËÙ¶ÈÒ»Ö±¼õС | |
B£® | Ï»¬¹ý³ÌÖУ¬¿Ë·þĦ²ÁÁ¦×öµÄ¹¦Îª$\frac{1}{4}$mv2 | |
C£® | ´ÓAÏ»¬µ½C¹ý³ÌÖе¯»ÉµÄµ¯ÐÔÊÆÄÜÔö¼ÓÁ¿µÈÓÚmgh | |
D£® | ÔÚC´¦£¬µ¯»ÉµÄµ¯ÐÔÊÆÄÜΪ$\frac{1}{4}$mv2-mgh |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ÄÚÄܱ£³Ö²»±ä | B£® | ËùÓзÖ×ÓÔ˶¯ËÙÂʶ¼Ôö´ó | ||
C£® | ·Ö×ÓÊÆÄܼõС | D£® | ·Ö×Óƽ¾ù¶¯ÄÜÔö´ó |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{{L}_{1}}{4}$$\sqrt{\frac{g}{h}}$£¼v£¼$\frac{1}{2}$$\sqrt{\frac{£¨4{{L}_{1}}^{2}+{{L}_{2}}^{2}£©g}{6h}}$ | B£® | $\frac{{L}_{1}}{4}$$\sqrt{\frac{g}{h}}$£¼v£¼L1$\sqrt{\frac{g}{6h}}$ | ||
C£® | $\frac{{L}_{1}}{2}$$\sqrt{\frac{g}{6h}}$£¼v£¼$\frac{1}{2}$$\sqrt{\frac{£¨4{{L}_{1}}^{2}+{{L}_{2}}^{2}£©g}{6h}}$ | D£® | $\frac{{L}_{1}}{2}$$\sqrt{\frac{g}{6h}}$£¼v£¼L1$\sqrt{\frac{g}{6h}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com